The First Thousand Shells of the E8 Root Lattice


The E8 root lattice is the set of all vectors x = ½(x1,x2,...,x8) ∈ Q8 such that x1,x2,...,x8 ∈ Z;   x1x2 ≡ ··· ≡ x8 mod 2;   and x1 + x2 + ··· + x8 ≡ 0 mod 4. Every such vector has norm x12 + x22 + ··· + x82 equal to an even integer 2m ≥ 0; and the number of lattice vectors of norm 2m is

See e.g. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Springer, 1990; also M. Viazovska, ‘The sphere packing problem in dimension 8’, Annals of Mathematics (2017) 185 (3): 991–1015. Here we list, for each m=1,2,3,...,1000, all the lattice vectors of norm 2m.

We refer to set of all lattice vectors of norm 2m as the m-th shell of the lattice. This set is a union of orbits of the corresponding Weyl group W(E8); and each such orbit is in turn a union of orbits under the monomial subgroup W(D8) < W(E8). The subgroup W(D8) is generated by the 8!=40320 coordinate permutations, together with the 27=128 even sign changes (in which the sign is changed for any even number of the eight coordinates). For each m, our text file shell‹m›.txt lists

For example for m=10,

the file shell10.txt is The 10th shell of the lattice (the 272160 vectors of norm 20)
2
7
1792 4 4 4 4 4 0 0 0
7168 5 5 5 1 1 1 1 1
8960 4 4 4 4 2 2 2 -2
8960 8 2 2 2 2 0 0 0
35840 7 3 3 3 1 1 1 1
71680 5 5 3 3 3 1 1 -1
107520 6 4 4 2 2 2 0 0
5
224 8 4 0 0 0 0 0 0
6720 6 6 2 2 0 0 0 0
7168 5 3 3 3 3 3 3 1
7168 7 5 1 1 1 1 1 -1
8960 4 4 4 4 2 2 2 2
has 2 orbits under W(E8):
  a W(E8)-orbit of size 241920, consisting of 7 types of vectors:
   1792 vectors of type (2,2,2,2,2,0,0,0)   (with all permutations and all sign changes);
   7168 vectors of type ½(5,5,5,1,1,1,1,1)   (with all permutations and even sign changes);
   8960 vectors of type (2,2,2,2,1,1,1,-1)   (with all permutations and even sign changes);
   8960 vectors of type (4,1,1,1,1,0,0,0)   (with all permutations and all sign changes);
   35840 vectors of type ½(7,3,3,3,1,1,1,1)   (with all permutations and even sign changes);
   71680 vectors of type ½(5,5,3,3,3,1,1,-1)   (with all permutations and even sign changes);
   107520 vectors of type (3,2,2,1,1,1,0,0)   (with all permutations and all sign changes);
  a W(E8)-orbit of size 30240, consisting of 5 types of vectors:
   224 vectors of type (4,2,0,0,0,0,0,0)   (with all permutations and all sign changes);
   6720 vectors of type (3,3,1,1,0,0,0,0)   (with all permutations and all sign changes);
   7168 vectors of type ½(5,3,3,3,3,3,3,1)   (with all permutations and even sign changes);
   7168 vectors of type ½(7,5,1,1,1,1,1,-1)   (with all permutations and even sign changes);
   8960 vectors of type (2,2,2,2,1,1,1,1)   (with all permutations and even sign changes)

This file may be retrieved at http://ericmoorhouse/e8/shell10.txt  (alternatively, click on the corresponding entry in the table below)

Substutitute m ∈ {1,2,3,...,100} for 10 to retrieve any of the first 100 shells.  Beyond that point, the file is gzipped; e.g. for the 137th shell, substitute shell137.txt.gz for the gzipped text filename.  The 310th shell is the smallest containing a regular W(E8)-orbit; i.e. the shortest lattice vectors having trivial stabilizer in W(E8) have norm 620.  The shortest lattice vectors having a stabilizer of order 2 (orbit of length 348364800) have norm 54; and there is a unique such orbit represented by (7,1,1,1,1,1,0,0,0) in the 27th shell.

Number of orbits per shell

Here is a table of the number of orbits of W(E8)-orbits on the m-th shell for the first few hundred values of m.  Each table entry is linked to the full shell file (shell‹m›.txt or shell‹m›.txt.gz) described above.

m +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20
0 1 1 1 2 1 1 2 2 2 2 2 2 3 2 2 4 3 3 4 3
20 3 4 4 3 5 4 5 6 5 3 6 6 5 6 6 6 8 6 6 7
40 7 6 10 8 7 8 9 7 10 9 9 11 11 8 11 10 10 12 12 9
60 13 11 13 14 13 10 17 14 12 13 15 13 17 15 15 17 18 13 19 16
80 16 18 21 15 20 18 19 21 20 17 24 22 20 20 23 18 25 23 24 25
100 25 20 29 24 22 26 31 24 29 25 26 30 31 24 33 30 30 30 33 24
120 33 32 34 34 36 28 40 36 31 34 40 32 41 36 37 38 42 33 45 40
140 37 40 47 37 43 41 45 47 47 38 50 46 45 46 53 41 53 48 48 49
160 52 45 61 52 48 51 61 47 56 54 58 60 63 47 64 59 56 59 68 53
180 64 62 63 63 67 56 76 68 63 63 74 59 73 67 70 72 79 65 79 74
200 67 74 88 68 79 74 81 80 82 67 90 85 79 80 92 73 89 86 86 86
220 93 77 100 90 87 88 107 83 96 92 94 97 104 86 108 100 95 97 111 89
240 103 103 110 105 113 92 120 110 101 107 124 104 119 110 111 114 124 103 129 120
260 114 117 137 105 123 121 129 129 133 110 137 132 122 125 149 119 140 134 137 131
280 142 121 156 142 133 134 161 131 144 142 146 149 161 133 160 152 147 150 172 140
300 158 156 161 156 167 144 181 169 153 158 182 151 172 166 174 171 187 152 186 176
320 165 172 205 164 185 180 184 183 192 165 203 196 187 181 212 171 198 194 199 195
340 209 182 219 203 188 196 235 192 209 208 212 211 226 187 231 219 210 212 241 201
360 220 223 229 225 241 204 249 238 221 221 261 216 244 236 242 234 257 221 263 251
380 232 239 280 228 250 249 267 257 271 231 275 269 252 254 296 249 275 269 268 269
400 284 249 303 283 268 269 316 257 281 284 292 291 312 266 310 298 281 286 332 276
420 302 305 314 299 324 276 338 326 299 300 347 296 322 316 323 320 349 300 346 334
440 319 323 379 309 338 336 348 339 357 316 370 362 336 338 389 327 358 359 368 359
460 381 328 392 375 352 354 421 356 375 377 377 376 404 351 413 398 382 377 430 358
480 390 397 411 395 426 372 434 420 385 396 458 394 423 416 428 415 448 384 453 444
500 413 419 484 406 431 437 450 445 467 411 470 465 439 433 507 424 465 466 468 455
520 485 436 507 488 455 456 533 451 474 481 499 487 523 449 519 505 480 483 555 476
540 502 511 514 502 536 473 555 539 507 507 575 490 528 530 542 532 572 503 567 558
560 515 527 617 521 553 558 572 553 584 514 597 593 555 548 635 545 577 582 587 577
580 616 550 626 608 577 575 672 573 600 609 617 607 646 568 650 638 600 607 686 594
600 620 638 660 632 672 589 682 669 621 625 722 630 661 665 666 651 702 623 707 701
620 657 656 755 640 679 686 710 692 729 655 729 725 676 680 786 681 719 723 734 712
640 752 668 775 754 709 711 818 706 729 755 755 753 799 707 790 784 747 737 847 728
660 766 787 797 768 818 737 837 828 760 767 872 763 798 805 834 803 864 761 852 848
680 793 800 924 806 831 847 850 837 879 791 892 893 842 831 944 814 860 880 892 873
700 919 831 929 911 850 857 994 863 889 916 927 900 958 848 962 957 901 896 1014 892
720 914 941 955 935 997 893 998 989 926 925 1058 926 967 980 993 963 1027 928 1029 1030
740 954 966 1099 958 986 1011 1044 1014 1062 954 1059 1065 996 992 1138 999 1036 1059 1050 1032
760 1091 994 1113 1102 1042 1030 1178 1023 1053 1083 1104 1080 1149 1037 1144 1133 1059 1067 1214 1079
780 1097 1134 1150 1111 1172 1049 1191 1185 1106 1111 1248 1109 1138 1165 1169 1156 1229 1104 1210 1220
800 1145 1138 1308 1136 1175 1212 1223 1190 1248 1144 1260 1273 1178 1176 1340 1183 1214 1245 1272 1231
820 1297 1175 1303 1294 1221 1215 1395 1240 1254 1292 1288 1274 1346 1213 1345 1343 1274 1266 1421 1249
840 1282 1330 1353 1318 1389 1270 1383 1391 1285 1303 1473 1315 1345 1380 1393 1345 1432 1287 1430 1443
860 1345 1344 1523 1348 1369 1409 1428 1402 1469 1349 1467 1478 1397 1383 1576 1390 1428 1469 1472 1439
880 1509 1389 1528 1528 1423 1429 1621 1437 1450 1506 1526 1499 1576 1421 1560 1569 1475 1466 1665 1497
900 1508 1562 1556 1521 1605 1475 1621 1637 1531 1521 1705 1513 1551 1593 1621 1578 1671 1528 1648 1669
920 1544 1565 1779 1582 1606 1653 1679 1623 1698 1549 1706 1726 1619 1613 1811 1629 1645 1698 1699 1684
940 1759 1614 1760 1768 1661 1645 1878 1667 1693 1768 1761 1718 1811 1665 1809 1825 1699 1710 1913 1718
960 1728 1799 1832 1771 1870 1703 1857 1869 1751 1749 1977 1794 1798 1855 1857 1821 1913 1755 1908 1936
980 1819 1809 2035 1805 1836 1902 1926 1887 1965 1824 1952 1987 1842 1843 2088 1877 1903 1969 1975 1932

/ revised September, 2019