
Solutions to Sample Exam
1. We solve to obtain α = 3β + 2, so

0 = (3β+2)2 + 2(3β+2) + 3 = 4β2 + 3β + 1 = 4(β2 + 2β + 4).

Thus β is a root of m(x) = x2+2x+4 ∈ F [x]. In fact, m(x) is the minimal polynomial

of β over F . If not, then β would be a root of a polynomial in F [x] of degree 1, forcing

β ∈ F , implying that α = 3β+ 2 ∈ F , a contradiction. Another way to see that m(x)

is irreducible in F [x] is to observe that its discriminant 22 − 4·4 = 3 is a nonsquare

in F . (The only squares in F are 0, 1, 4.)

By the way, we independently verify that the minimal polynomial given for α is

also irreducible, in the same way: its discriminant is 22−4·3 = 2 which is a nonsquare

in F .

2. Write α = θ2 + θ where θ = 21/3. Then

α3 = θ6 + 3θ5 + 3θ4 + θ3 = 4 + 6θ2 + 6θ + 2 = 6α+ 6

so α is a root of m(x) = x3 − 6x − 6. This polynomial is irreducible in Q[x] (the

divisors of 6 are ±1,±2,±3,±6, none of which are roots of m(x)) so m(x) is in fact

the minimial polynomial of α over Q.

Remarks: It turned out I didn’t require the relation α2 = θ2 + 2θ + 4. If I did,

then I would have used the fact that 1, α, α2, α3 are four elements in an extension

Q[θ] ⊃ Q of degree 3 (with basis 1, θ, θ2) so they are linearly dependent over Q. At

this point we would have solved for α3 as a linear combination of 1, α, α2. We would

have obtained the same answer as above.

3. Following the hint, observe that m(x) = x3 − 2 ∈ F [x] is irreducible (the only cubes

in F are {0, 1, 6}) so F343 = F [α] where α is a root of m(x). To find a 3 × 3 matrix

A ∈ F 3×3 having the same minimal polynomial as α, use a companion matrix of m(x)

as we did earlier in the semester, say

A =

 0 1 0
0 0 1
2 0 0


so

R = F [A] = {a+ bA+ cA2 : a, b, c ∈ F} =


 a b c

2c a b
2b 2c a

 : a, b, c ∈ F

 .



4. In class, we listed irreducible polynomials of degree 6 4 over F2. One of them is

m(x) = x4 + x+ 1. This is irreducible since it has factors of degree 1 in F2[x] (0,1 are

not roots) and it is not divisible by x2 + x+ 1 (the only irreducible quadratic). So

F16 = F2[α] = {a+ bα+ cα2 + dα3 : a, b, c, d ∈ F2}
where α4 = α+ 1.

5. (a) Let α be a root of m(x) in an extension field E ⊃ F of degree p, so that E ∼= Fq

where q = pp. So σ(α) = αp = α − 1, using the fact that α is a root of m(x).

Repeatedly applying σ gives σj(α) = α − j for j = 0, 1, 2, . . . , p−1 ∈ E. These

are all roots of m(x) since σ is an automorphism of E.

Alternatively, one could write the roots as α, α+1, α+2, . . . , α+p−1. (Or

α, αp, αp2

, . . . , αpp−1

, but that would not be simplified.)

(b) The automorphism σ permutes the p roots of m(x) in a cycle of length p as

α 7→ α−1 7→ α−2 7→ · · · 7→ α−p+1 7→ α.

6. No, Q[
√

2] 6∼= Q[
√

3] since the polynomial f(x) = x2 − 3 ∈ Q[x] has roots in Q[
√

3]

but not in Q[
√

2].

If
√

3 = a + b
√

2 for some a, b ∈ Q, then 3 = a2 + 2ab
√

2 + 2b2 and 2ab
√

2 =

3 − a2 − 2b2. Since
√

2 is irrational, this would require ab = 0. But if b = 0 then√
3 = a ∈ Q, which is impossible. Otherwise a = 0 and

√
3 = b

√
2 and

√
6 = 2b ∈ Q,

a final contradiction.

7. (a) f(t) = t
4

(
1− t2

4

)−1
= t

4 + t3

16 + t5

64 + t7

256 + t9

1024 + · · ·.
You know several other ways to expand the series (using Taylor series, partial

fractions, recursively solving for coefficients, etc., any of which would give the

same answer) but since this is simply a geometric series, there is a clear shortest

approach.

(b) ex = 1 + x+ x2

2 + x3

6 + x4

24 + x5

120 + · · · ∈ E is not a rational function.

8. (a) T (b) F (c) T (d) F (e) T (f) T (g) T (h) T (i) T (j) T

Comments in #8:

(a) Recall that if E ⊇ F is any field extension, the fields E and F have the same charac-

teristic.

(b) As discussed in class, the nontrivial automorphism σ of Q[
√

2] is discontinuous. Let

a1, a2, a3, . . . ∈ Q be a sequence of rational numbers converging to
√

2; then

lim
n→∞

σ(an) = lim
n→∞

an =
√

2

whereas



σ
(

lim
n→∞

an

)
= σ

(√
2
)

= −
√

2.

(c) As discussed in class.

(d) The field R has no nontrivial automorphisms. Observe that
√

2 is a square in R but

−
√

2 is not. (Suppose φ is an automorphism of R satisfying φ(
√

2) = −
√

2, and let

a = 4
√

2 ∈ R. Then φ(a)2 = φ(a2) = φ(
√

2) = −
√

2 < 0, which is impossible in R.)

(e) Let α = π2; then α is transcendental over Q, so Q(α) ∼= Q(π) via an isomorphism

Q(α) → Q(π) mapping α 7→ π. However, Q(α) 6= Q(π); in fact, [Q(π) : Q(α)] = 2.

(Recall that if α and β are transcendental over Q, then Q(α) ∼= Q(t) ∼= Q(β).)

(f) An example of a proper field extension of C is C(t), the field of rational functions of t

with complex coefficients. Note however that C has no proper finite extension fields.

(g) Let E ⊇ Q be an extension field, and let σ be automorphism of E. It is easy to see

that σ(a) = a for every a ∈ Q; so by definition of a field automorphism, σ(au+ bv) =

aσ(u) + bσ(v) for all a, b ∈ Q; u, v ∈ E.

(h) Similar to #9 on Practice Problems 1.

(i) 60 = 22·3·5 where 3 = 2+1 and 5 = 22+1 are Fermat primes..

(j) Let E ⊇ Q be a cubic field extension, so that [E : Q] = 3. Suppose that E has three

distinct automorphisms ι, σ, σ2, and consider an element of the form b = a + σ(a) +

σ2(a) ∈ E where a ∈ E. Then

σ(b) = σ(a) + σ2(a) + a = b.

This implies that b ∈ Q. (The extension E ⊃ Q has no intermediate fields, since it

has prime degree 3; so the fixed field of any automorphism is either Q or E. Since

σ 6= ι, its fixed field must consist of rational numbers only.)


