

Solutions to the Exam

- 1. (a) $(x+1)(x^2+2)$
 - (b) $(x+1)(x^2+2)$
 - (c) $(x+1)(x+\sqrt{-2})(x-\sqrt{-2})$
 - (d) $(x+1)(x^2+2)$
- 2. The extension $F = \mathbb{Q}[\alpha] \supset \mathbb{Q}$ is normal: it contains all four roots of m(x), namely

$$\begin{array}{lll}
\alpha_1 &=& 2i + \sqrt{3} &=& \alpha \in F, \\
\alpha_2 &=& 2i - \sqrt{3} &=& \frac{1}{7}(\alpha^3 + 2\alpha) \in F, \\
\alpha_3 &=& -2i + \sqrt{3} &=& -\frac{1}{7}(\alpha^3 + 2\alpha) \in F, \\
\alpha_4 &=& -2i - \sqrt{3} &=& -\alpha \in F.
\end{array}$$

- (a) $\{1, \alpha, \alpha^2, \alpha^3\}$. In place of the powers of α , you can substitute the corresponding powers of α_i for any of the four roots α_i . Or you can take $\{1, i, \sqrt{3}, i\sqrt{3}\}$ as a basis. But clearly you cannot use $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ since these are linearly dependent.
- (b) $m(x) = (x \alpha_1)(x \alpha_2)(x \alpha_3)(x \alpha_4).$
- (c) F has exactly five subfields: \mathbb{Q} , $\mathbb{Q}[i]$, $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[i\sqrt{3}]$, F. These correspond to the five subgroups of G, which are G, $\langle \tau \rangle$, $\langle \sigma \rangle$, $\langle \sigma \tau \rangle$, $\langle \iota \rangle$ respectively.
- (d) F has four automorphisms; $G = \operatorname{Aut} F = \{\iota, \sigma, \tau, \sigma\tau\}$ where

$$\begin{split} \iota(a + bi + c\sqrt{3} + di\sqrt{3}) &= a + bi + c\sqrt{3} + di\sqrt{3}, \\ \sigma(a + bi + c\sqrt{3} + di\sqrt{3}) &= a + bi - c\sqrt{3} - di\sqrt{3}, \\ \tau(a + bi + c\sqrt{3} + di\sqrt{3}) &= a - bi + c\sqrt{3} - di\sqrt{3}, \\ \sigma\tau(a + bi + c\sqrt{3} + di\sqrt{3}) &= a - bi - c\sqrt{3} + di\sqrt{3}. \end{split}$$

for $a, b, c, d \in \mathbb{Q}$. Note that τ is complex conjugation.

- (e) A glance at the subfields of F, listed in (c), shows that the only subfield of F containing β is F itself.
- 3. (a) Solve $f(x) = \phi(g(x)) = g(\frac{1-3x}{5x-2})$ for g(x) gives $g(x) = \phi^{-1}(f(x)) = f(\frac{2x+1}{5x+3})$.
 - (b) The subfield $\mathbb{Q} \subset F$, consisting of constant functions, is fixed by every automorphism, including ϕ .
 - (c) All powers of ϕ commute. Besides ϕ and the identity, every power ϕ^k (with $k \neq 0, 1$) is a valid answer. One such answer, from (a), is $\phi(f(x)) = f(\frac{2x+1}{5x+3})$. Another is $\phi^2(f(x)) = \phi(\phi(f(x))) = f(\frac{5-14x}{25x-9})$.

- (d) The maps $\sigma(f(x)) = f(2x)$ and $\tau(f(x)) = f(1-x)$ are automorphisms of F. (Their inverses are $\sigma^{-1}(f(x)) = f(\frac{1}{2}x)$ and $\tau^{-1} = \tau$.) These two automorphisms do not commute since $\sigma(\tau(f(x))) = f(1-2x)$ whereas $\tau(\sigma(f(x))) = f(2-2x)$.
- 4. (a) First Solution.

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

$$1 = (1 - x + x^2)(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots)$$

$$= a_0 + (a_1 - a_0)x + (a_2 - a_1 + a_0)x^2 + (a_3 - a_2 + a_1)x^3 + (a_4 - a_3 + a_2)x^3 + \cdots$$

Solving for $a_0=1$, $a_1=1$, $a_2=0$, $a_3=-1$, etc. we have

$$f(x) = 1 + x - x^{3} - x^{4} + x^{6} + x^{7} - x^{9} - x^{10} + \cdots$$

Second Solution.

$$f(x) = \frac{1}{1 - (x - x^2)} = 1 + (x - x^2) + (x - x^2)^2 + (x - x^2)^3 + \cdots$$

= 1 + (x - x^2) + (x^2 - 2x^3 + x^4) + (x^3 - 3x^4 + 3x^5 - x^6) + \cdots
= 1 + x - x³ + \dots.

(b) First Solution.

$$g(x) = 1 - 2x + 3x^{2} - 4x^{3} + 5x^{4} - 6x^{5} + \cdots$$
$$xg(x) = x - 2x^{2} + 3x^{3} - 4x^{4} + 5x^{5} - 6x^{6} + \cdots$$
$$(1 + x)g(x) = 1 - x + x^{2} - x^{3} + x^{4} - x^{5} + \cdots = \frac{1}{1 + x}$$
$$g(x) = \frac{1}{(1 + x)^{2}}$$

Second Solution.

$$g(x) = \frac{d}{dx} \left(x - x^2 + x^3 - x^4 + x^5 - x^6 + \cdots \right)$$
$$= \frac{d}{dx} \frac{x}{1+x} = \frac{1}{(1+x)^2}$$

- - (b) The quadratic has roots $\frac{-3\pm\sqrt{3^2-4\cdot2\cdot4}}{2\cdot2} = \frac{-3\pm\sqrt{3}}{4} = \frac{-3\pm4}{4} = 9\pm1 = 8$ or 10.

Comments (not required, but provided here for your benefit):

(a) The only automorphism of the field of real numbers is the identity map $\iota(a) = a$.

- (b) This is the 'fixed field' of σ , which is featured so prominently in Galois theory.
- (c) The extension $\mathbb{C} \supset \mathbb{R}$ of degree two has infinitely many one-dimensional subspaces, but only one of them, \mathbb{R} , is a subfield. For example, the subspace $\{bi : b \in \mathbb{R}\} \subset \mathbb{C}$ is not a subfield.
- (d) The infinite field $\mathbb{F}_2(x)$ has characteristic 2.
- (e) Let p be any prime divisor of n; then n = 0 in \mathbb{F}_p .
- (f) In general, whenever F is a field of prime characteristic p, the map $\sigma: F \to F$, $\sigma(a) = a^p$ is a monomorphism (an injective homomorphism). When the field F is finite, this means σ is an isomorphism. So is its inverse, $\sigma^{-1}(a) = a^{1/p}$.
- (g) In F((x)), there are uncountably many distinct elements $\sum_{i=0}^{\infty} a_i x^i$ with coefficients $a_i \in \{0, 1\}$. The same argument gives uncountably many distinct real numbers $\sum_{i=0}^{\infty} a_i 10^{-i}$ with $a_i \in \{0, 1\}$.
- (h) This is a ring with zero divisors. For example, fg = 0 where $f(a) = \min\{0, a\}$ and $g(a) = \max\{0, a\}$.
- Abel's Theorem shows that this is false for a large class of polynomials of degree 5 (although the corresponding statement is true for polynomials of degree at most 4).
- (j) Similarly to (h), this ring has zero divisors, e.g.

 $(1, 0, 1, 0, 1, 0, \ldots)(0, 1, 0, 1, 0, 1, \ldots) = (0, 0, 0, 0, 0, 0, \ldots).$

However, in class we discussed how to find a maximal ideal $Z \subset \mathbb{R}^{\infty}$ such that the quotient ring \mathbb{R}^{∞}/Z is a field.