
Solutions to the Exam
December, 2024

1. (a) (x+ 1)(x2 + 2)

(b) (x+ 1)(x2 + 2)

(c) (x+ 1)(x+
√
−2)(x−

√
−2)

(d) (x+ 1)(x2 + 2)

2. The extension F = Q[α] ⊃ Q is normal: it contains all four roots of m(x), namely

α1 = 2i+
√

3 = α ∈ F,
α2 = 2i−

√
3 = 1

7 (α3 + 2α) ∈ F,
α3 = −2i+

√
3 = − 1

7 (α3 + 2α) ∈ F,
α4 = −2i−

√
3 = −α ∈ F.

(a) {1, α, α2, α3}. In place of the powers of α, you can substitute the corresponding

powers of αi for any of the four roots αi. Or you can take {1, i,
√

3, i
√

3} as a basis.

But clearly you cannot use {α1, α2, α3, α4} since these are linearly dependent.

(b) m(x) = (x− α1)(x− α2)(x− α3)(x− α4).

(c) F has exactly five subfields: Q, Q[i], Q[
√

3], Q[i
√

3], F . These correspond to the

five subgroups of G, which are G, 〈τ〉, 〈σ〉, 〈στ〉, 〈ι〉 respectively.

(d) F has four automorphisms; G = AutF = {ι, σ, τ, στ} where

ι(a+ bi+ c
√

3 + di
√

3) = a+ bi+ c
√

3 + di
√

3,

σ(a+ bi+ c
√

3 + di
√

3) = a+ bi− c
√

3− di
√

3,

τ(a+ bi+ c
√

3 + di
√

3) = a− bi+ c
√

3− di
√

3,

στ(a+ bi+ c
√

3 + di
√

3) = a− bi− c
√

3 + di
√

3.

for a, b, c, d ∈ Q. Note that τ is complex conjugation.

(e) A glance at the subfields of F , listed in (c), shows that the only subfield of F

containing β is F itself.

3. (a) Solve f(x) = φ(g(x)) = g
(
1−3x
5x−2

)
for g(x) gives g(x) = φ−1(f(x)) = f

(
2x+1
5x+3

)
.

(b) The subfield Q ⊂ F , consisting of constant functions, is fixed by every automor-

phism, including φ.

(c) All powers of φ commute. Besides φ and the identity, every power φk (with

k 6= 0, 1) is a valid answer. One such answer, from (a), is φ(f(x)) = f
(
2x+1
5x+3

)
.

Another is φ2(f(x)) = φ(φ(f(x))) = f
(
5−14x
25x−9

)
.



(d) The maps σ(f(x)) = f(2x) and τ(f(x)) = f(1−x) are automorphisms of F .

(Their inverses are σ−1(f(x)) = f( 1
2x) and τ−1 = τ .) These two automorphisms

do not commute since σ(τ(f(x))) = f(1−2x) whereas τ(σ(f(x))) = f(2−2x).

4. (a) First Solution.

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·
1 = (1− x+ x2)(a0 + a1x+ a2x

2 + a3x
3 + · · ·)

= a0 + (a1−a0)x+ (a2−a1+a0)x2 + (a3−a2+a1)x3 + (a4−a3+a2)x3 + · · ·

Solving for a0=1, a1=1, a2=0, a3=− 1, etc. we have

f(x) = 1 + x− x3 − x4 + x6 + x7 − x9 − x10 + · · · .

Second Solution.

f(x) =
1

1− (x−x2)
= 1 + (x−x2) + (x−x2)2 + (x−x2)3 + · · ·

= 1 + (x−x2) + (x2−2x3+x4) + (x3−3x4+3x5−x6) + · · ·

= 1 + x− x3 + · · · .

(b) First Solution.

g(x) = 1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + · · ·
xg(x) = x− 2x2 + 3x3 − 4x4 + 5x5 − 6x6 + · · ·

(1 + x)g(x) = 1− x+ x2 − x3 + x4 − x5 + · · · =
1

1 + x

g(x) =
1

(1 + x)2

Second Solution.

g(x) =
d

dx

(
x− x2 + x3 − x4 + x5 − x6 + · · ·

)
=

d

dx

x

1 + x
=

1

(1 + x)2

5. (a) Using elementary row operations,
[

2
11

7
4

∣∣ 5
3

]
∼
[

1
11

10
4

∣∣ 9
3

]
∼
[
1
0

10
11

∣∣ 9
8

]
∼
[
1
0

10
1

∣∣ 9
9

]
∼
[
1
0

0
1

∣∣ 10
9

]
, giving the unique solution (x, y) = (10, 9). We check to confirm that

this satisfies both linear equations.

(b) The quadratic has roots −3±
√
32−4·2·4
2·2 = −3±

√
3

4 = −3±4
4 = 9± 1 = 8 or 10.

6. (a) F (b) T (c) F (d) F (e) T (f) T (g) T (h) F (i) F (j) F

Comments (not required, but provided here for your benefit):

(a) The only automorphism of the field of real numbers is the identity map ι(a) = a.



(b) This is the ‘fixed field’ of σ, which is featured so prominently in Galois theory.

(c) The extension C ⊃ R of degree two has infinitely many one-dimensional sub-

spaces, but only one of them, R, is a subfield. For example, the subspace

{bi : b ∈ R} ⊂ C is not a subfield.

(d) The infinite field F2(x) has characteristic 2.

(e) Let p be any prime divisor of n; then n = 0 in Fp.

(f) In general, whenever F is a field of prime characteristic p, the map σ : F → F ,

σ(a) = ap is a monomorphism (an injective homomorphism). When the field F

is finite, this means σ is an isomorphism. So is its inverse, σ−1(a) = a1/p.

(g) In F ((x)), there are uncountably many distinct elements
∑∞

i=0 aix
i with coef-

ficients ai ∈ {0, 1}. The same argument gives uncountably many distinct real

numbers
∑∞

i=0 ai10−i with ai ∈ {0, 1}.
(h) This is a ring with zero divisors. For example, fg = 0 where f(a) = min{0, a}

and g(a) = max{0, a}.
(i) Abel’s Theorem shows that this is false for a large class of polynomials of de-

gree 5 (although the corresponding statement is true for polynomials of degree at

most 4).

(j) Similarly to (h), this ring has zero divisors, e.g.

(1, 0, 1, 0, 1, 0, . . .)(0, 1, 0, 1, 0, 1, . . .) = (0, 0, 0, 0, 0, 0, . . .).

However, in class we discussed how to find a maximal ideal Z ⊂ R∞ such that

the quotient ring R∞/Z is a field.


