Fields

Book III

We have been folking about number fields: finite extensions $E \supseteq \mathbb{Q}$ i.e. $(E:\mathbb{Q}) = n < \infty$. (Some are Galois :e. $G = Aut E$ satisfies $ G = n$; but in general $ G \leq n$.)
Back to basics: In a field F, if 1+1+1++1=0 then the smallest a for which this occurs is the characteristic of F
If F has clearecteristic $n > 0$ then n must be prime. If $n = ab$, $a, b \ge 1$ then $f(x) = b = b$, $a, b \ge 1$ then $f(x) = b$, $a, b \ge 1$ then
By minimality of n, n is prime. If 1+1++1 =0 for any n>1, then we say n has characteristic 0.
Given a field F, charF = characteristic of F is either 0 or $p(\text{some prime } p)$. If charF = p then F = Field of order $p(F_p = \frac{2}{p_L} = \frac{5}{2}, \frac{1}{2}, $
eg. IF, IF, IF, IF,, IF (n)= & all notional functions in x with coefficients in IF,
■ If char F= 0 then F ⊇ Q. Eg. R, C, Q, number fields, A = Falgebraic numbers 3 C C eg. QUEI
In either case F has a unique smellest subfield, either F or Q, called the prime subfield of F.

_

_

All fields of characteristic O are infinite. (They are extensions	of Q, hance vector sprcas over Q)
IF EZF is a field extension (i.e. E, Fase fields with	Fa subfield of E) then
E is a vector space over F. The dimension of this vector	r space is the degree [t:+] of
this extension eq.	
$[C:R] = 2 [R:R] = \infty [C:R] = [C:R]$	ອີໂຄ• ຄີ - ທ
SI is basis $CK \cdot KJ = CL \cdot QJ = LL \cdot QJ = $	
	2 🔿
are (m. map.	
T. P. Ola D alignet stir a sting a East and fight some	are infinite:
for fields of cuardi lensing - find thomas is a unique	Rold of order q= pk (up to isomorphism
Given à poine and RZI (positive integra), time is a f	
tinite fields : 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 17, 173, 176, 17, 1	
F = Solve2 +]OlvB[x]OlvB[char $F_{a} = 2$.
4 CO 1 2 R 0 0 0 0 0	
I O I & B	11 A The of augree [14 the]-2
a cox R 1	with basis 1, a
BRUIDBRDAIX	$\mathbf{F}_{a} = \{a_{1} + ba : a_{i}b \in \mathbf{F}_{a}\}$
<u>TIP</u>	= SOI & Ito 3 where a = att
$\alpha_{i+\alpha} = \alpha_{i+\alpha} = \alpha_{i+\alpha} = \alpha_{i+1} = 0 \alpha_{i+\alpha} = 0 \alpha_{i+\alpha} = \alpha_{i+\alpha$	
	$\mathbf{T} = \mathbf{T} [\mathbf{r}]^{\mathbf{r}}$
	The minimal poly. of a over the is x + x+ s
	· · · · · · · · · · · · · · · · · · ·

Irreducible polynomials over IF. = {0,13 There are 2" polynomials of degree n: x"+ cn, x"+ ...+ Cr and they are all mornic, Co, C1, ..., Ca-i E Fz $x^{+} + c_{x} x^{-} + \cdots + c_{x} + c_{0}$ dagues 1: X, X+1 (both irreducible) degree 2: x^{2} , $x^{2}+1$, $x^{2}+\pi$, $x^{2}+\pi+1$ $x \cdot x$ $(\pi+1)(\pi+1)$ $x(\pi+1)$ irreducible Let α be a nost of $x^2 + x + 1$. The other noof is $\alpha + 1$. $\alpha^2 + \alpha + 1 = 0 = 7 \quad \alpha^2 = -\alpha - 1 = K + 1$ reducible Note: The rests of an +6x+C=0 are -b± 1/2-1m except in characteristic 2. hegree 3: x3 = X.X.X $x^{3}+1 = (x+1)(x^{2}+x+1)$ $x^{3}+x = x \cdot (x+1)^{2}$ x + X+1 irreducible ie. Y= 1+1 F= Fa[8] where I is a not of x3+x+1 $\chi^{3}_{+}\chi^{2} = \chi \cdot \chi \cdot (\chi + i)$ $\chi^{3}_{+}\chi^{2}_{+/}$ irreducible $= \{a, l+b, q+c, q^2 : a, b, c \in \mathbb{R}\}.$ $\gamma = 1$ $x^{2} + x^{2} + x = x(x^{2} + x + 1)$ = {0,1,1, 1+1, 8, 8+1, 9+9, 1+9+13. $q' = \gamma + \cdots + \gamma$ $x^{2} + x^{2} + x + 1 = (x + 1)^{3}$ 76 94 75 $\gamma = \gamma^{-}$ In general the nonzero daments of Fa form a cyclic group of order q-1. $q_{=}^{3} = q_{+}^{3} + 1$ $x^3 + x + 1$ has three roots in $f_{\overline{g}}$: $\gamma, \gamma^2, \gamma^4$. $q^{\dagger} = \gamma^{\dagger} + \gamma^{\dagger}$ 95= 13+92 = 9+9+1 X+x2+1 has three works in The: $\gamma^{b} = \gamma^{2} + \gamma^{2} + \gamma = (1+1) + \gamma + \gamma$ There is only one finite field of each order q=pt (p prime, k>1) up to isomorphism $\mathbf{T}^{\mathbf{s}}, \mathbf{T}^{\mathbf{s}}, \mathbf{T}^{\mathbf{s}} = \mathbf{T}^{\mathbf{s}}, \mathbf{T}^{\mathbf{s}} = \mathbf{T}^{\mathbf{s}}$ $\gamma^{7} = \gamma^{5} + \gamma = (\gamma^{4}) + \gamma^{2} = (\gamma^{4})$ If \mathbb{F}_q is a finite field then it must have cher $\mathbb{F}_q = p$ for some prime p $|\mathbb{F}_q| = q < \infty$. So \mathbb{F}_q is an extension $\mathbb{F}_q \supseteq \mathbb{F}_p$ hence a vector space of some dimension $\mathbb{F}_q \supseteq \mathbb{F}_p$ $|\mathbb{F}_q| = q < \infty$. Let $\alpha_{i_1} \cdots, \alpha_h$ be a besis for \mathbb{F}_q over \mathbb{F}_p i.e. $\mathbb{F}_q = \{q_i \alpha_i + q_i \alpha_h : q_i, \dots, q_k \in \mathbb{F}_p\}$. $g = \left(\left| f_{g} \right| \right) = p^{n} p^{n} + p^{n}$

$F_q = F_s[i]$ compare : $G = R[i]$,	Q[i] > Q i= Fi. Si, i? is a bassis of the extension Q[JZ] > Q in each case
$= \{ a+bi : a, b \in \overline{H_3} \}$ = $\{ 0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i \}$	$i = F_1 = \sqrt{2}$ $H_2 = H_2 [i] = H_2 [J_2]$
$\theta^{\prime} \theta^{\prime} \theta^{\prime$	
Q is a primitive doment: its powers	$\theta^2 = (1+i)^2 = /(1+2i) + i^2 = 2i^2$
give all the nonzers dements of IFg.	$\theta^{2} = \frac{2i}{\theta^{2}} (i+i) = -2 + 2i = 1 + 2i$
	$\theta = \theta^{q} \theta = (1+2i)(1+i) = 1-2 = -1=2$ $\theta^{s} = \theta^{q} \theta = -\theta = 2\theta = 2+2i$
	$\theta^{6} = \theta^{4} \cdot \theta^{2} = -\theta^{2}$
Every finite field IFz (q=pk, p prime)	$\theta^8 = \theta^9 \cdot \theta^4 = -\theta^4$
whose powers give all the nonzero field eliment	$\varsigma = 1$
prinitive concert: The nonzero powerts for	n a multiplicative 5 8 67
Komorphism: dihekoal goons of order & (symmet	group of a square) ?
quaternion	rents, of order 4, Every abolion group is a direct product of cyclic
abelicing. C2 × Cq (fourdements of order 4, the	ce clements of order 2) Cn = caclic group of order n (multiplicative
1. Cr×Cr×Cr (with series of	order 2) $C_n = \{1, g, g^*, \dots, g^{m-1}\}, g^{m-1}$

In a field of order 9 the polynomial 2-1	has at most 2 roots.		· · · · · · · ·
(In FIR], where F is any field every	she nomial of degree & ha	s at most k	roots.)
If f(x) < F[x] has k motor r,, r < F, the	$f(x) = (x-r,)(x-r_2) - (x-r_k)h(x)$		
	legner k		
$x^{2}-1 = (x-1)(x+1)$			
$\overline{H_{25}} = \overline{H_{25}} [\overline{J_2}] \neq \overline{H_{25}} [\overline{J_1}] = \overline{J_1} = \overline{J_4} = \pm 2$	In Frs, -1 is dready a spu	are .	
1, 12 is a besis	$H_{s}[i] = H_{s}[2] = H_{s}$		
· · · · · · · · · · · · · · · · · · ·	$Q[J_{4}] = Q[2] = Q$	· · · · · · · · ·	
	$R[J\overline{z}] = R$		
	$\mathbb{R}[i] = C$		
In $ K \pi \int_{C} \pi - 2$ is reducible since $\pi - 2 = (\pi + 12)$	(3~ ^x)		
(x+1 is irreducible			
How do we extend to to the? We want a go	undratic extension [F: F]	-2,	
A choice of basis is \$1, 503 if at I is	not a square of any element	in the i.e. X	$-a \in f[x]$
	On the a life the	Should be me	lf are more
When p is an old prine, there are p-1 nonze	200 ecembers and here of your	are spranes, a	
When p=5, the nonzero elements of to are 12,3,9	stare 1,4 de squares; 2,	3 are no-squares	2
₩ ₂ = ₩ ₂ [√2] = ₩ ₂ [√3]			$\sim \sim $
$p_{a} = 2, x^2 = (x_a)^2$ i.e. $x^2 = \pi \cdot \pi$	$x^{2} = (x - b^{2})^{2}$	0,13 has squar	es only.
reducible	reducible But not	x+1 is irredu	cible in #[x]
	$I_{4} = I_{2} [\alpha] , \alpha$	root of x2+x-	F[1.]

If q=pk then the I is an extension of degree [the the] = k with exactly k automorphisms.
In $H_q = H_s[i]$, the map at bit a bit is the norideatity automorphism. In $H_{25} = H_s[I_2]$, the \cdots at $b_1 \overline{c} \rightarrow a_2 \overline{b_1 \overline{c}}$.
$ \overline{H_4} = \overline{H_2[\kappa]} \text{the map } \begin{array}{l} p \rightarrow p \\ p \rightarrow p \\ \kappa \rightarrow p \\ \kappa \rightarrow \rho \\ \kappa \rightarrow \mu \\ \kappa \rightarrow \mu \end{array} $
Finite fields are Galois extensions of their prime fields: IF 2 IF, q=pk, p prime
$[ff_q: ff_p] = k$ so $G = Aut ff_q$ has order $ G = k$ and $G = \{L, \sigma, \sigma^2,, \sigma^{k-1}\}, \sigma^k = L$. Here $\sigma(\pi) = \pi^p$.
$\sigma(xy) = (xy)^2 = \sigma'y^2 = \sigma(x)\sigma(y)$ for all $x, y \in H_q$.
$\sigma(x+y) = (x+y) = x^{p} + px^{p}y + \frac{p(p_{1})}{2}x^{p}y^{2} + \dots + pxy^{p} + y^{p} $ by the Binamial Theorem $(x+y)^{p} = \sum_{k=0}^{\infty} {\binom{n}{k}}x^{k-1}y^{k}$
$= x^{p} + y^{p} = \sigma(x) + \sigma(y)$ $(n) = \frac{n!}{n!} = n$ $(n) = \frac{n!}{n!} = n$ $(n) = \frac{n!}{n!} = n$
σ: The is a homomorphism All elements of The are roots of x=x. (" ++ (")
ker $\sigma = \{x \in F_q : \sigma(x) = o\} = \{o\}$ so σ is one-to-one.
Since Ity is finite, o is onto. So o is an isomorphism to the it. o is an antomorphism of
Aut Ty 2 SI, 0, 0, 0, 0, 0, 0 but these automorphisms can't all be distinct
$\sigma^{k}(x) = \sigma(\sigma(\sigma(\dots(\sigma(x))))) = (((f_{x} \stackrel{P}{}))^{P}) \dots)^{r} = \chi^{r} = \chi^{2} = \chi$ In $f_{2} = \{x \in f_{2} : x \neq 0\}$ is a multiplicative group (actually of order $q = i$ $\chi^{2} = i$ for all $x \in f_{2}$

F_{q} . $F_{q} > F_{z}$ of degree $[F_{q} : F_{z}] = 2$ with basis $\{1, \alpha\}$	x $\overline{v}(x) = x^2 - \overline{b}(x) = x^4$
$H_{4} = \{0, 1, \alpha, \beta\} \text{ where } \beta = \alpha^{2} = \alpha + 1 \qquad \text{Aut } H_{4} = \langle \sigma \rangle = \{1, \sigma\}$ $= \sum_{\alpha, 1, \beta} \sum_{\alpha, \beta} \alpha + \alpha + \alpha + \beta = \alpha^{2} = \alpha + 1 \qquad \text{Aut } H_{4} = \langle \sigma \rangle = \{1, \sigma\}$	0 0 0 1 1 1 1 X B X
$F = \sum_{i=1}^{n} G = \langle \sigma \rangle = \{i, \sigma\}$	β × β
$\frac{1}{5} = \frac{1}{5} = \frac{1}$	$x = \sigma(x) = x^3$
$F_{q} = \{a + bi \} = \{0, 1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 1\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } \{1, 2\}, [T_{q} : H_{3}] = 2 \text{with basis } $	
i= FI = 12 E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	atbi a-bi
(a+bi)=	9 + 3 2 bi + 3 (bi) + (bi)
Eq. $F_{2} \supset F_{2} = \{0, 1\}$ $[F_{2} : F_{2}] = 3 = G $ where $F_{2} = Aut F_{2} = \langle \sigma \rangle = \{1, \sigma, \sigma^{2}\}, \sigma^{2}$	= 4 -6 [°]
$H_{\overline{g}} = \{a + b\gamma + c\gamma^2 : a_i b_i c \in H_{\overline{z}} \}, \gamma^3 = \gamma + 1 \qquad \sigma(x) = x^2, x$	$\overline{\sigma(x)} = \pi^2$
$\begin{cases} 1, 1, 1^2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{1}{\gamma^2} = \frac{1}{\gamma^2}$
	$\begin{array}{c} \gamma_{-}^{\dagger} \gamma_{+} \gamma_{-}^{2} \\ \gamma_{-}^{\dagger} \gamma_{-}^{\dagger} \gamma_{-}^{2} \end{array}$
	$\begin{array}{c} \mathbf{f}_{+} \mathbf{T}^{*} & \mathbf{\gamma} \\ = 1_{+} \mathbf{T}_{+} \\ 1_{+} \mathbf$
\cdot	= 1 7=7+7+1 = 1 1

extension field $E \ge F$ flan a, β are conjugates Eq. $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ has nots $\pm J\overline{z} \in \mathbb{R}$ or in $\mathbb{Q}[V\overline{z}]$. $\pm V\overline{z}$ are conjugates If $f(x) = x^2 + i \in \mathbb{Q}[x]$ has nots $\pm i \in \mathbb{C}$ or $\mathbb{Q}[i]$. $\pm i$ are conjugates In E there can be an auto-corplism of E fixing every dennest of F and mapping a not of $f(x)$ to any of its conjugates. Eq. $f(x) = x^2 - 2$ has there nots x , and and othere $\alpha = \sqrt{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{13}}{2}$, $\omega = e^{\pi i/3} = -\frac{1+\sqrt{13}}{2}$. The dennesits x , only and are conjugates. There are all the conjugates of α . in $\mathbb{Q}[x, \omega] \supset \mathbb{Q}$, $[\mathbb{Q}[x, \omega] : \mathbb{Q}] = 6$ $x^2 - i(x-\alpha)(x-\alpha\omega)(x-\alpha\omega^3)$ $\mathbb{Q}[x]$ is not the splitting field of $f(x) = x^2 - 2$ $\mathbb{Q}[x]$ is not the splitting field of $f(x) = x^2 - 2$ $\mathbb{Q}[x] \supset \mathbb{Q}] = 3$ $\mathbb{Q}[x, \omega] \xrightarrow{2}{2}$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] = 3$ $\mathbb{Q}[x, \omega] \xrightarrow{2}{2}$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] = 3$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x] = 3$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] = 3$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x]$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x]$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x] \supset \mathbb{Q}[x]$ $\mathbb{Q}[x] \supset \mathbb{Q}[x] $
Eq. $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ has roots $\pm \sqrt{2} \in \mathbb{R}$ or in $\mathbb{Q}[\sqrt{2}]$. $\pm \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ gives. If $f(x) = x^2 + i \in \mathbb{Q}[x]$ has roots $\pm i \in \mathbb{C}$ or $\mathbb{Q}[i]$. $\pm i$ are conjugates. In \in there can be an automorphism $v \in Aut \in I$ fixing every dearness of F and mapping a root of $f(x)$ to any of its conjugates. Eq. $f(x) = x^2 - 2$ has three roots x , and and $y = \sqrt{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{2}}{2}$, $\omega^2 = e^{2\pi i/3} = -\frac{1+\sqrt{2}}{2}$. The elements x , and $y = 0$ are conjugates. There are all the conjugates of x . in $\mathbb{Q}[x, \omega] \supset \mathbb{Q}$, $[\mathbb{Q}[x, \omega] : \mathbb{Q}] = 6$ $x^2 - 2 = (x - \alpha)(x - \alpha \omega)(x - \alpha \omega)(x - \alpha \omega)$ $\mathbb{Q}[x], \omega]$ is not the splitting field of $f(x) = x^2 - 2$ $\mathbb{Q}[x]$ is not the splitting field of $f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)$ $[\mathbb{Q}[x] : \mathbb{Q}] = 3$ $[\mathbb{Q}[x] : \mathbb{Q}] = 3$ $\mathbb{Q}[\alpha]$ $\mathbb{Q}[\omega]$ 3 = 3
If $f(x) = x^{2} + i \in Q[x]$ has roots $\pm i \in C$ or $Q[i]$. $\pm i$ are conjugits. In E there can be an auto-confirme of Aut E fixing every deement of F and mapping a root of $f(x)$ to any of its conjugates. Eq. $f(x) = x^{2} - 2$ has three roots x , and and $x = \sqrt{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{3}}{2}$. Eq. $f(x) = x^{2} - 2$ has three roots x , and and $\omega = \sqrt{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{3}}{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{3}}{2}$. The elements x , and $\psi = \alpha_{1/3} = \alpha_{1/3} = -\frac{1+\sqrt{3}}{2}$. The elements x , and $\psi = \alpha_{1/3} = \alpha_{1/3} = -\frac{1+\sqrt{3}}{2}$. The elements x , and $\psi = \alpha_{1/3} = \alpha_{1/3} = -\frac{1+\sqrt{3}}{2}$. In $Q[x, \omega] \supset Q$, $[Q[a, \omega] : Q] = 6$. $x^{2} - (x-\alpha)(x - \alpha \omega)(x - \alpha \omega)(x - \alpha \omega)$. $Q[x, \omega] = \delta$. $Q[x]$ is not the splitting field of $f(x) = x^{2} - 2$. $Q[x]$ is not the splitting field of $f(x) = x^{2} - 2$. $Q[a, \omega]$. [Q[x] : Q] = 3. $[Q[a, \omega] : Q] = 3$. $[Q[a, \omega] : Q] = 3$. $[Q[a, \omega] : Q] = 3$. $Q[a, \omega]$. $Q[a, \omega] = 3$. Q
In E there can be an automorphism of Aut E fixing every dement of F and mapping a not of $f(x)$ to any of its conjugates. Eq. $f(x) = x^2 = 1$ has three roots x , and aw^2 where $\alpha = \sqrt{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{2}}{2}$, $\omega = e^{4\pi i/3} = -\frac{1+\sqrt{2}}{2}$. The doments x , we are conjugates. There are all the conjugates of α . In $\mathbb{Q}[x, \omega] \supset \mathbb{Q}$, $[\mathbb{Q}[x, \omega] : \mathbb{Q}] = 6$ $x^2 = (x - \alpha)(x - \alpha \omega)(x - \alpha \omega^3)$ $\mathbb{Q}[x]$ is the splitting field of $f(x) = x^2 - 2$ $\mathbb{Q}[\alpha]$ is not the splitting field of $f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)$ $[\mathbb{Q}[x] : \mathbb{Q}] = 3$ $[\mathbb{Q}[\alpha \omega] : \mathbb{Q}[\alpha \omega] : \mathbb{Q}] = 3$ $[\mathbb{Q}[\alpha \omega] : \mathbb{Q}[\alpha \omega] : \mathbb{Q}[$
root of $f(x)$ to any of its conjugates. Eq. $f(x) = x^{3} - 2$ has three roots x , and and where $\alpha = \sqrt[3]{2}$, $\omega = e^{2\pi i/3} = -\frac{1+\sqrt{3}}{2}$, $\omega^{2} = e^{\pi i/3} = -\frac{1+\sqrt{3}}{2}$. The elements x , and $y(\omega)^{2}$ are any added are all the conjugates of α . in $\mathbb{Q}[x, \omega] \supset \mathbb{Q}$, $[\mathbb{Q}[x, \omega] : \mathbb{Q}] = 6$ $x^{2} - 2 = (x - \alpha)(x - \alpha \omega)(x - \alpha \omega^{3})$ $\mathbb{Q}[\alpha, \omega]$ is the splitting field of $f(x) = x^{3} - 2$ $\mathbb{Q}[\alpha]$ is not the splitting field of $f(x) = x^{3} - 2 = (x - \alpha)(x^{2} + \alpha x + \alpha^{3})$ $[\mathbb{Q}[x] : \mathbb{Q}] = 3$ $[\mathbb{Q}[\alpha\omega] : \mathbb{Q}] = 3$ $\mathbb{Q}[\omega]$ $\sqrt[3]{3}$ $\mathbb{Q}[\omega]$
Eq. $f(x) = x^{2} - 2$ has three roots x, and, and where $\alpha = \sqrt{2}$, $\omega = e^{2\pi/3} = -\frac{1+\sqrt{3}}{2}$, $\omega = e^{-\frac{\pi}{2}}$. The doments x, and, with are conjugates. There are all the conjugates of x. in $Q[(x, \omega] \supset Q$, $[Q[x, \omega] : Q] = 6$ $\chi^{2} - 2 = (x - \alpha)(x - \alpha\omega)(x - \alpha\omega^{3})$ $Q[(x, \omega)]$ is the splitting field of $f(x) = x^{2} - 2$ $Q[(x)]$ is not the splitting field of $f(x) = x^{3} - 2 = (x - \alpha)(x^{2} + \alpha x + \alpha^{3})$ [Q[(x]] : Q] = 3 [Q[(x]] : Q] = 3 [Q[(x]] : Q] = 3 [Q[(x]] : Q] = 3 Q[(x)] Q[(x)] = 3 Q[(x)] = 3
The doments $x, wo, wo are onjugates. There are all the conjugates of x.in \mathbb{Q}[x, \omega] \supset \mathbb{Q}, [\mathbb{Q}[x, \omega] : \mathbb{Q}] = 6x^2 - 2 = (x - \alpha)(x - \alpha \omega)(x - \alpha \omega^2)\mathbb{R}[x, \omega] is the splitting field of f(x) = x^2 - 2\mathbb{Q}[\alpha] is not the splitting field of f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)[\mathbb{Q}[x] : \mathbb{Q}] = 3[\mathbb{Q}[x] : \mathbb{Q}] = 3\mathbb{Q}[x] = 3$
in $\mathbb{Q}[\alpha, \omega] \supset \mathbb{Q}$, $[\mathbb{Q}[\alpha, \omega] : \mathbb{Q}] = 6$ $x^{2}-2 = (x-\alpha)(x-\alpha\omega)(x-\alpha\omega^{2})$ $\mathbb{Q}[\alpha, \omega]$ is the splitting field of $f(x) = x^{2}-2$ $\mathbb{Q}[\alpha]$ is not the splitting field of $f(x) = x^{2}-2 = (x-\alpha)(x^{2}+\alpha x + a^{2})$ $\mathbb{Q}[\alpha]$ is not the splitting field of $f(x) = x^{2}-2 = (x-\alpha)(x^{2}+\alpha x + a^{2})$ $\mathbb{Q}[\alpha, \omega] = 3$ $\mathbb{Q}[\alpha, \omega] = 3$ $\mathbb{Q}[\alpha, \omega] = 3$ $\mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha, \omega] = 3$ $\mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] = 3$ $\mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] = 3$ $\mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] = 3$ $\mathbb{Q}[\alpha] \otimes \mathbb{Q}[\alpha] = 3$ \mathbb
$ \begin{array}{c} (x, \omega) = 0 \\ x^{2}-2 = (x-\alpha)(x-\alpha\omega)(x-\alpha\omega^{2}) \\ (k(x, \omega) = x^{2}-2 \\ (k(x, \omega) = x^{2}-2 = (x-\alpha)(x^{2}+\alpha x + \alpha^{2}) \\ (k(x) = x^{2}-2 = (x-\alpha)(x^{2}+\alpha $
$x^{2}-2 = (x-\alpha)(x-\alpha\omega)(x-\alpha\omega^{2})$ (R(a, \omega)] is the splitting field of $f(x) = x^{3}-2$ (R(a)] is not the splitting field of $f(x) = x^{3}-2 = (x-\alpha)(x^{2}+\alpha x + \alpha^{2})$ (R(a)]: Q] = 3 $\begin{bmatrix} Q(a) \\ (\alpha\omega) \\ (\alpha\omega)$
$ \begin{array}{c} \left[$
Q[a] is not the splitting field of $f(x) = x^2 - 2 = (x - \alpha)(x^2 + \alpha x + \alpha^2)$ [Q[a]: Q] = 3 [Q[aw]: Q] = 3 [Q[aw]: Q] = 3 Q[a] = 3 Q[a] Q[aw]
$ \begin{bmatrix} Q[u] : Q] = 3 \\ [Q[u]] : Q] = 3 \\ \begin{bmatrix} Q[u] : Q] = 3 \\ 3 \end{bmatrix} = 3 \\ Q[u] = 3 \\$
$\begin{bmatrix} \mathbb{Q} \{u\} : \mathbb{Q} \} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\} : \mathbb{Q} \end{bmatrix} = 3 \\ \begin{bmatrix} \mathbb{Q} \{u\omega\}$
$\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$ $\begin{bmatrix} \mathbb{Q} \left[\alpha \omega \right] : \mathbb{Q} \right] = 3$
R

Eq. $H_g \supset F_z = \{o, i\}$, $[H_g : F_z] = 3 = G $ where $f = \operatorname{Aut} F_g = \langle \sigma \rangle = \{i, \sigma, i\}$ $H_g = \{a + b\gamma + c\gamma^2 : a, b, c \in H_z\}$, $\gamma^3 = \gamma + 1$ $\{1, 1, \gamma^2\}$ basis $H_g = \{a + b\gamma + c\gamma^2 : a, b, c \in H_z\}$, $\gamma^3 = \gamma + 1$ $\sigma^2(x) = (x^2)^{\frac{1}{2}} = x^4$ $\sigma^2(x) = (x^2)^{\frac{1}{2}} = x^3 = x$		$\frac{f(x) = \pi^2}{0}$	
		$ \begin{array}{c} 1 = 1 + 1 \\ 76 = 1 + 7^{2} \\ 1 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 1 \\ 1 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	••••
$H has roots in H_g: \gamma, \gamma^2, \gamma^4$	17=1 17=1	7=1+7+1 1 1	~ ¹⁰ 2
$f(x) = x^{3} + \pi + i = (x - \tau)(x - \tau^{2})(\pi - \tau^{4})$ $(\tau^{3} + \tau + i) = 0$	$p(\lambda_3) = \lambda$ $p(\lambda_3) = \lambda$	$\gamma^{R} = \gamma^{5}$	V-7
7 + 7 + 1 = 0 $\gamma^3 \in H_g$ must have minimal poly. $g(x) \in F_2(\pi)$ of daysee 3. This must be $s_0 g(x) = \pi^3 + \chi^2 + 1$ must have roots $7^3, 8^4, 7^5$	$g(x) = x^3 + y$	¢+)	· ·
The roots of x-x E F_(x) are all the eight elements of			•••
$\chi^{\mathcal{B}}_{-\chi} = \chi(\chi^{\mathcal{P}}_{-1}) = \chi(x_{-1})(\chi^{6} + \chi^{5} + \chi^{4} + \chi^{3} + \chi^{2} + \chi + 1)$ = $\chi(x_{+1})(\chi^{3} + \chi + 1)(\chi^{3} + \chi^{2} + 1)$ 0 $\chi^{\mathcal{B}}_{-\chi}(\chi^{2}, \chi^{6})$			· · ·

•	•	#5	5	•	• 4		. (me	nt.	5 -		2		00	5	ъ	?	- X 		x .	2 .	- X 	(x <u>1</u>	- 7)) <u>-</u> - - -	· · ·	×6	2 4 -		(x-	-1) -1) 	M	. 1 = -	() 7 0	(-2 (x-)() -1) 1	r−3)(x)() -2 2	x)() (x-3 ?	×+ / 5) (5) Gr- 4	-9) 7	•	•	•	•	•	•	
•	S	ub	fi	de	ls	. 2	f	1	- 16	:	Ę		Æ		Fr.		•	•	•	•	•	•	•	•	•	•	•	5	58	· ·	2]	14	3	• •		•	•	•	•	•			用ノ	4016		•	•	•	•	•	
•	•	•	•	•	•	•	•	· ·		110	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	• •		•	•	•	IF,) 				2	4 F	•	•	•	•	•	
•	•	•	•	•	•	•	•	• •			• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•			•	•	•	2	L.	/ !\		/:	3	" '8		•	•	•	•	
										F2																															. F	2					•				
•	•		i E. D	0		· ~~			1	-		0		- '.		د.		_	AP.				0		1 1	4	-														•										
•	•	M Pi	at nti	h na	4 m	55 Ę	o Sa	2 2	3pr f	-in 20'	8- 24 21	20	725 m	5 - 2	= * De	45 ^ع د `	7		(lu 8:	eo : 30 Put	8 Da	n. Ma	₹ 	トイン	ru : 3	nk op	ver m	s ject	E (line	•••	•	•	• •	· · ·	•	•	•	•	•	•			•	•	•	•	•	•	•	· ·
•	•	M Pr	at I I	h na ute	4 m	55 Ę	o Sa	2 2	3pr f	-in 20'	8- 24 ai	20	725 nu	6 2	= A	45 [°] ເົ	7		thu 8: 11	200 : 30 Put	y a tu	M. M.	₹ ,	トイン	r u : 3	nk op s	ver m	s jec	E E	line	•	•	•	• •	· · ·	•	•	•	•	•	•	· · ·		•	•	•	•	•	•	•	· · ·
	•	M R	at I I	h na ute	4 m ite	55 Ę	o Sa	, 2	3pr f	-in 20'	8- 24 ai	2	725 mu	5 - e	= A	45 ^a c `	7 5+0		(lu 8 `1	200 : 30 Put	3 Da	с Л. Эти	₹ 7, ,	をから	Yu 3	nk op s	er m	s jec		line	• • •	•	•		· · ·		· · · · · · · · · · · · · · · · · · ·	•	•	•	•	· · ·		•	•	•	•	•	•		· · ·
	•	M Pr	at I I	h na ùte	4 m	55 Į	o t	2	3pr F	-in 20'	24	2	72 5 mi	2	= ¹	45 ² 0	7		(lu 8: 1	20 : 30 Put	3 tu		₹ 7,7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	F 10 3	nk op s	ver m ule	s jec	E (line	•	•	•				· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	•	•	· · · · · · · · · · · · · · · · · · ·		· · ·	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·	
		M R	ad uti I	h na ùte	4 m	55 Ę	D Saa	2	3pe {	-in 20 20	8- 24 ai	2 2 1	725 MU	5 - e	= 4 De	45 [°] ~	7		(lu 8: 11	20 : 30 Put	3 tu	6 m. 7m.	₽ -,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r u 3	op s	er m	s jec		line	•	•	•						•		•	· · · · · · · · · · · · · · · · · · ·		•		•	•	•	•		
		MR	at I	h na ùte	4 m ble	55 E	D Saa	?	3pr f	-20 20	8- 24 ai	2	72 5 mJ	e		45° ~	7 5+6		(lu 8: 11	200 - 30 Put	3 Dan true		₽ -,	N 4 5	Fu 3	ops	ver	s jec		line	•							• • • • • • • •		•	• • • • • • • • •			•	• • • • • • •						
		M Pr	lati I	h na ùte	4 m 172	55 E	⊃ ⇒a	2	3pr {	-in 20'	8-24	2	nu	2	= A	45° ~	7		(fu 8: 11	200 : 34 Put	7 Da tu	с Эти 2	₹ ,		3	uk op s	er m	s jec ^t	· · ·	line												· · · · · · · · · · · · · · · · · · ·									
		R	adi nti I	h na ùte	4 m he	55 Este		2	3pr f	- 20 	8- 24 ai	2 2 1	m	2	= A	45° ~	- 7 5+6			ler 230 Put	Ja.	с Эти З	₽ ,		ru 3	uk ops	ver m	s je⊂		line	•											· · · · · · · · · · · · · · · · · · ·									
		MR	adt uti I	h na ùte	4 m He	55 E		2	3p. {	20	8-24		nu	2		45° ~	7			20 - 30 Put	3 tu				Fu 3	ops	er m	s jec		line	· · · · · · · · · · · · · · · · · · ·										• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·									
		R	att I	h na ite	4 m 72	55 E		2	3pr {	20	8- 24 ai		nu	C -		4 5ື ເ	7		(fu 8: 1	20 - 32 Put	Jan true		₽ ,			ops	ver	s jec		line	•																				
		R	att I	h na ùte	4 m h2	55 E			3pr {	-in 20 	8- 24 ai	2	nul	e e	= A	45 [°] ູີ	7		(fu 8: 1	20 - 30 Put	Jan true	2	★ - ,		Yu 3	ops	er nie	s jec		line																					
		R	ad uti I	la na ùte	4.	55 E			Zpr {	-in 20'	24		nine Nine Nine Nine Nine Nine Nine Nine	e		45 [°] ~	7			200 - 34 Put		3	♣ -,			ops	er ne	\$ je⊄		line	· · · · · · · · · · · · · · · · · · ·																				

More examples of fields: F((x)) > F(x) > F where F is a field.
Laurant series in x rational functions in x (à symbol) with coefficients in F with coefficients in F
Eg. $f(x) = \frac{x}{1-x-x^2} \in Q(x)$ can be regarded as an infinite scries on x with exciticities in the
$= F_0 + F_1 x + F_2 x^2 + F_3 x^3 + \cdots \text{where} F_i \in \mathbb{O}$ $f'(x) = \frac{(1 - x - x^3)(1 - x(-1 - 2x))}{(1 - x - x^2)^2} = \frac{1 + x^2}{(1 - x - x^2)^2}$
$f''(x) = \frac{(1-x-x^2)^2(2x) - (1+x^2)(-1-2x)}{(1-x-x^2)(-1-2x)} = \frac{(1-x-x^2)(2x) + 2(1+x^2)(1+2x)}{(1+x^2)(1+2x)} = 2x-2x^2-2x^3+2(1+2x+x^2+2x^3)$
$(1-x-x^2)^4$ $(1-x-x^2)^3$
$= \frac{2+6x + 2x}{(1-x-x^2)^3}$
f''(x) = etc.
Taylor series centered at 0 for $f(x) = 2 \frac{f''(0)}{n!} x'' = f(0) + f'(0)x + \frac{f''(0)}{n} x^2 + \frac{f''(0)}{$
$A^{20} = 0 + 1 x + \frac{2}{2} x^{2} + \frac{12}{7} x^{4} + \frac{3}{7} $
The tiberacci sequence F_{x} is defined recursively = $x_1 + x_2^2 + 2x_3^2 + 3x_4^2 + 5x_5^2 + 8x_6^2 + 13x_7^2 +$
$f_{n} = \{f_{n+1} \in [f_{n+1} \in [f_{n+2}], n \in [f_{n+2} \in [f_{n+2}$

Alternatively: $S(x) = \frac{x}{1-x-x^2} = q_0 + q_1 x + q_2 x^2 + q_3 x^3 + q_4 x^4 + \cdots = \frac{x}{p_1 q_1} + \frac{x^2}{q_1^2}$	+ 2x3 + 3x4+	5x5 + 8 x6+
$\chi = (1 - \chi - \chi^2) (q_0 + q_1 \chi + q_2 \chi^2 + q_3 \chi^3 + q_4 \chi^4 + \cdots) \qquad q_{0=0} \qquad q_{q=1} \qquad q_{q=1}$		
$= q_0 + (q_1 - q_0) x + (q_2 - q_1 - q_1) x^2 + (q_3 - q_2 - q_1) x^3 + (q_4 - q_3 - q_2) x^4 + \cdots$		
Third way: 1 = 1+ u+ u2 + u3 + u7 + (geometric series)		
Since $(1-u)(1+u+u^2+u^3+u^4+) = 1-(u+u^2+\mu^2-u^3+\mu^3+)$	= 1	
Substitute u= x+r2		
$\frac{x}{1-y_{x}^{2}} = x \left(1 + (x+x^{2}) + (x+x^{2})^{2} + (x+x^{2})^{2} + (x+x^{2})^{2} + (x+x^{2})^{2} \right)$		
$= \chi \left(1 + (x + x^{2}) + (x^{2} + 2x + x^{4}) + (x^{3} + 3x^{3} + x^{6}) + (x^{3} + 4x^{3} + 6x^{6} + 4x^{7} + x^{6}) \right)$	Fair (1 1 1 1 1 1 1 1 1 1	
$= x \left(1 + x + 2x^{2} + 3x^{3} + 5x^{3} + 5x^{$		
$= \pi + 3^{2} + 2x^{3} + 3x' + 5x^{2} + \cdots$	上= A (1-是) =>	l = A(n-p)
Fourth method: $X = X = A(+p_X) + B(1-a_X) = 7^{(-p_X + - x)}$		7 A= a+ p= vs
$\overline{1-x-x^2} = (\overline{1-xx})(\overline{1-\beta x}) - \overline{1-\alpha x} - 1-\beta x \qquad (\text{for } x=\frac{1}{p})$	$\vec{p} = D(\vec{p}) \Rightarrow$	$= B(\beta - \alpha)$ $= B(-\sqrt{s})$
a, B are the reciprocal roots of 1-x-x= x(x-x-1)		> 8=-+
$\alpha = \frac{(+1)5}{2}, \beta = \frac{+15}{2}, \alpha - \beta = \sqrt{5}$	· · · · · · · · ·	
$\frac{x}{1 - \alpha x} = \frac{x}{1 - \alpha x} = \frac{1}{1 - \alpha x} \left(\frac{1}{1 - \alpha x} - \frac{1}{1 - \beta x}\right) = \frac{1}{1 - \beta x} \left(\frac{2}{\alpha^{2} x^{n}} - \frac{2}{\beta^{n} x^{n}}\right) = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\alpha^{n} - \beta^{n}) x^{n}}{(\alpha^{n} - \beta^{n}) x^{n}} = \frac{1}{\sqrt$	$\sum_{n=0}^{\infty} f_n x^n = x + x^2 + 1$	$2x^3 + 3x^4 + 5x^5$
$F = \alpha^{n} + f = $	1B) <1 So	B->0
$\frac{1}{F_n} \rightarrow \chi$ $t_n \sim \frac{1}{V_s}$ of $\frac{1}{N}$ $\frac{1}{V_s}$ nearest integer.	x >1 so a"	ghows "

Eg.	Comt the number an of	sequences of c	is and is o	f length	n havin	g no te	vo Consecui	tive 1's.	• • •
· · · · · ·	n D	=2			· · · · ·		· · · · · ·	· · · · · ·	
	2 00 10, 01 q 2 000, 100, 010, 001, 101	= 3 9 ₃ = 5					· · · · · ·	· · · · · ·	· · ·
Dilla	q mont	94 = 8	l'applications	ia we	uch F(x)	Cannot	Giverge	anywhere	eg .
(r)= Ž	n! x" = 1+ x + 2x2 +	$6x^3 + 24x^4 + \cdots$				· · · · · ·			
f(x) ² :	$= (1 + x + 2x^{2} + 6x^{3} +)^{2} = 1$	+ 2x+ 592+	· · · · · · · · · · ·	~~~~	ol	· · · · · · ·			
$\frac{f(x)}{x} =$	$\frac{1}{\pi}$ + 1 + 2 π + 6 x^{2} + 24 x^{3} +		· · · · · · · ·						
Ţ	$\frac{\pi}{-x-x^2} = x+x^2+2$	x ³ + 3x ⁴ + 5x ⁵ + 8	5x6 +	· · · · ·		· · · · · ·	· · · · · ·	· · · · · ·	• • •
$\frac{1}{1-x}$	$\frac{1}{2} = 1 + x + 2x^2 + 3x^3 + \cdots$								
x-x Weat	$\frac{2}{2} = \frac{1}{\pi} + (1 + 2x + 3x^{2} + 5)$ - is a series f(x) =	$a_0 + a_1 x + a_2 x^2 +$	az x ³ + · · · rea	lly?	· · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · ·
We the So	Rink of fas the if g(x) = bot b, x + box	Sequence (00,9, 2+ then	az az) g is ceally	0 g is ((b, b, b, b,	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	· · ·
f+g = fg =	(9,+6, 9,+6, 9,+6, 9 (0,6, 0,6,+9,6, 9,6, multiplication is by	2 + 63,) entr 2,6, + 2,60, 2,63 + convolution (not	ywise addition 9, b2 + 92 b, + 93 bo, eatrywise)	····).	fg= (c.	, C1 , C2, C3,	···), · C _h =	2 akba-k	· · · ·

F[[x]] = power se	ries in a with cor	thicients in F. (a ring) a a a a		
Eller = fold of a	notigate of FIINT	((ike F[[x]]	but with some neg	ative powers of x)	
$F = F = \frac{5}{6}$					
2 4 5 7	-3 -2	15-0 0			
$\frac{x + x + x^{2} + x^{4} + \cdots}{x^{5} + x^{6} + x^{7} + x^{7} + \cdots}$	= x + x + 1 + x	(higher d	gree (lame)		
$(x^{2} + x^{4} + x^{3} + x^{7} +)$	$= (x^5 + x^6 + x^9 + x^9)$	$x'' + \cdots) (x^{-3} + x^{2} + 1)$	+ []x)		
			re la contra de la		
	10 st lie int	notice cometa an	all so and a	Il nonzem construct	too
In the ring +[[x]],	the mits (le. in	10-20 clonent are	mit he elements	WALK NONCOLD CONSIGNAL	· · · · · ·
	a default of a second of the s				
+((x)) is nowener	a nea	Der Ster	notive exercisents as	well as onsitive expone	ats?
t((x)) is noweder	infinitely many f	powers of x with ne	gative exponents as	well as positive expone	to ?
+((x)) is nowellow why cen't we allow (+ x ³ + 7 ² + x ² + 1	infinitely many f +x + x^2 + x^3 +)(.	EVENS of x with ne $1+5x^3+2x^2+7x^3+11+$	$gative exponents as + 13x + 2x^{2} + 3x^{3} + x^{4} + .$	well as positive expone is undefined	ats? whereas
f((x)) is noweder $voly can't are allow (+ x^3 + x^2 + x^2 + 1)(x^2 + x^2 + 1)$	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1}{7\pi^{1} + \ + 3y + 2x^{2} + 3y }$	$gative exponents as+ 13x+2x^{2}+3x^{3}+x^{4}+.x^{3}+x^{4}+ = 7x^{-3}+10$	well as positive expone) is undefined $8x^2 + 31x^2 + 33 + 36x +$	ats? whereas
$f((x)) is nowed for voluy can't we allow (+ x^3 + \pi^2 + x' + 1(\pi^2 + x' + 1)$	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1}{2} \frac{1}{7} \frac{1}$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x3 + (1)	well as positive expone) is undefined $8\pi^2 + 31\pi^2 + 33 + 36\pi + \cdots$	ate? vohereas
$f((x)) is noweach voluy can't we allow (+ x^3 + 7^2 + x^2 + 1(7^2 + x^2 + 1)F((x))$	$\frac{1}{2} = \frac{1}{2^{2}/2}$	$\frac{1}{7} = \frac{1}{7} \left(1 - x + x^{2} - x^{3} \right)$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x3 + 10+ x4 - x5 +) = x3	well as positive expone) is undefined $8x^{2} + 31x^{-1} + 33 + 36x +$ $x^{-1} + 1 - x + x^{2} - x^{3} + 9^{4} - x$	ats? vobereas
F((x)) = F(x) $F[(x)] = F(x)$ $F(x) = F(x)$	$\int \frac{1}{x^{2}+x^{3}} + $	$\frac{1}{x} = \frac{1}{x^2} \left(1 - x + x^2 - x^3 \right)$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x-3 + (1+ x4 - x5 +) = x2	well as positive expone) is undefined $8x^2 + 31x^2 + 33 + 36x +$ $x^2 + 1 - x + x^2 - x^3 + x^4 - x$	ats? vobereas
F((x)) = F(x) $F((x)) = F(x)$ $F((x)) = F(x)$	$\frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}$	$\frac{1}{x} = \frac{1}{x^2} \left(1 - x + x^2 - x^3 \right)$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x3 + (1)+ x4 - x5 +) = x2	well as positive expone is undefined $8x^{-2} + 31x^{-1} + 33 + 36x +$ $x^{-1} + 1 - x + x^{-1} - x^{-1} + x^{-1} - x^{-1}$	ats? valereas
F[(x)] = F(x) $F[x] = F(x)$ $F[x] = F(x)$	$\frac{1}{x^{3}+x^{3}} = \frac{1}{x^{2}(1+x^{3})}$	$\frac{1}{x} = \frac{1}{x^2} \left(\frac{1}{x^2 + x^2} + \frac{1}{x^2} +$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x-3 + 10+ x4 - x5 +) = x2	well as positive expone) is undefined $8x^{2} + 31x^{-1} + 33 + 36x +$ $x^{-1} + 1 - x + x^{2} - x^{3} + x^{4} - x$	robereas
F[(x)] = F(x) $F[(x)] = F(x)$ $F[(x)] = F(x)$	infinitely many f +x + x^2 + x^3 +)(+x + x^2 + x^3 +)(+x + x^2 + x^3 +)(E(x) $\frac{1}{x^2 + x^3} = \frac{1}{x^2(1+x^3)}$	$\frac{1}{x} = \frac{1}{x^2} \left(1 - x + x^2 - x^3 \right)$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x-3 + (1)+ x4 - x5 +) = x3	well as positive expone) is undefined $8x^{2} + 31x^{-1} + 33 + 36x +$ $x^{-1} + 1 - x + x^{2} - x^{3} + \pi^{4} - x$	stereas
$F[(x)] is noweach using can't are allow (+ x^{3} + \pi^{2} + x^{3} + 1(\pi^{2} + x^{3} + 1F((x))F[(x)] F(x)F[x]F$	$\int \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} + \frac{1}{x^{2}+x^{3}} = \frac{1}{x^{2}(1+x^{3})}$	$\frac{1}{x} = \frac{1}{x^2} (1 - x + x^2 - x^3)$	gative exponents as+ 13x + 2x2 + 3x3 + x4 + .x3 + x4 +) = 7x3 + 10+ x4 - x5 +) = x3	well as positive expone) is undefined $8x^{2} + 31x^{4} + 33 + 36x +$ $x^{2} + 1 - x + x^{2} - x^{3} + x^{4} - x$	stereas

Automorphisms of $Q(x) \supset Q$ includes $f(x) \mapsto f(x+i)$ has inverse $f(x) \mapsto f(x+i)$ $f(x)+g(x) \mapsto f(x+i) + g(x+i)$ $f(x)g(x) \mapsto f(x+i)g(x+i)$ $[Q(x): Q] = \infty$ (actually $g(x)$)	5
This is a start on one of the Hu24 problems.	
How about square roots?	
For $f(x) \in Q(x)$, when does $\sqrt{f(x)} \in Q(x)$. $\sqrt{x} \notin Q(x)$. Very small fraction of functions $f(x) \in Q(x)$ have $\sqrt{f(x)} \in Q(x)$.	
eq if $F = Q(x)$ then $E = F(\sqrt{x}) = Q(x,\sqrt{x}) = Q(\sqrt{x})$ since $x \in Q(\sqrt{x})$, in fact $x \in Q(\sqrt{x})$	Q[F;]
$\sqrt{1+x} \in \mathbb{Q}(\mathbb{X})$	
$\sqrt{1+x} = q_{1} + q_{2} + q_{3} + q_{4} + q_{5} + q_{6} + q_{$	
$\in \mathbb{Q}[[*]]$	
$1+3 = (0+03+03^{2}+03$	↓
$q = \pm [. g _{5} + g _{1} + g _{$	A+
$N_{24,3} = (4, 7, 4, 7, 4, 7, 2, 3, 7, 7, 2, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	A
$q = -\frac{1}{2}$) X 1. *. *. *
$\mathbf{g} = \mathbf{f}$	
an a	
$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{2}x^2$	
The Last called moto of 1+x in Q[[x]] are $\pm \sqrt{1+x} = \pm (1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^2 - \cdots)$	
inc in Prince in the	

Binomial Theorem $(1+x)^a = \sum_{k=0}^{\infty} {\binom{a}{k}x^k} {\binom{a}{k}} =$	a(4-1) (a-2) (a k(k-1) (k-2)	1-k+1) 2.1 K-61	k= {0,1,2,}
	Polynomial of	degree le in a	
	but if a < 80,	1,2, 7 then this	value (2) is
	entry k in ron	wa of Pascal	s triangle).
$(1+x)^{-} = 1 + \frac{1}{2}x + \frac{2(2-1)}{2!}x^{2} + \frac{2(2-1)(2-2)(2-3)}{3!2!}$	× ¹ + ···		
$\binom{4}{(2)}$ $\binom{4}{(2)}$ $\binom{4}{(2)}$ $\binom{4}{(4)}$			<u>5</u>
$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$			
$\overline{f} = \frac{1}{2} \int \frac{1}{\sqrt{2}} 1$			
$\sqrt{2+x} = \sqrt{2}\sqrt{1+\frac{x}{2}} \in \mathbb{R}[1,T]$ On that about #:	3 (?)		
$\sqrt{4} + x = 2\sqrt{1+\frac{\pi}{4}} \in \mathbb{Q}[[x]]$			
TO a k a man last we have a field of order a	migne up to	isonorpluser,	denoted F. F.
If $q = p$, p prime $k = 1$ and $k = 1$!	
first suppose q is add i.e. p= chart is mu		n an	
Half the monters examples the 7 miles	ELS T	ABLENASIE	KE I SAW ELBA
$\mathbb{E}_{q} = \mathbb{E}_{q} $	Tylid, =+		
a a2 a a a a a a a a a a a a a a a a a	square.	· · · · · · · · · ·	• • • • • • • • •
$\frac{1}{2}$ $\frac{1}$		quadratic ex	lusion.
-3=4 2 DF q= 24 then every element of FG	has a unique :	square rest and	$ \chi \rightarrow lx$ is
	un aut	mal house at 113	

$Q \subset R \subset R^*$ R : reals, R^* : hyperreals
Back to basics: Ind D In a trand damain is commutative ring with identity ! having no zero divisors (i.e. 96 => db+0
ce T Z[x], R[x] An ideal in R is a subset (actually subring) which is closed under taking R-linear
combinations. A subset ACR with OEA is an ideal if
$r_1a_1 + r_2a_2 + \cdots + r_ka_k \in A$ for all $a_1, \cdots, a_k \in R$; $r_1, \cdots, r_k \in R$.
Eq. it we fix a,, a. e K then the inear generated by and is
$(a_1, \dots, a_n) = \{r_1, a_1 + \dots + r_n a_n : r_1, \dots, r_n \in R\}$ (Compare: the spen of a set of vectors in a vector
The second ideal generated by mis
Eq. in L, Fix an integer m. the principles of an integer is an ideal in Z.
The anothern ring is $\mathbb{Z}_{1} = \mathbb{Z}_{1} = S$ and $\mathbb{Z}_{1} = S$ (m) $1+(m) 2+(m) \cdots m-1+(m)$
$m_{\rm e}$ m_{m
W/ is a field. W/m) is not a prine meloss in is prine
$S = - = 3$ $f = R_{ell} = -\overline{C} = \overline{C} = \overline{C} = \overline{C}$ (Zern divisors $\overline{2} = \overline{3} = \overline{4}$) with $\overline{1}, \overline{5} = -\overline{1}$).
$\frac{1}{6}$ = {0, 1, 5} is not a given 25-0 - 0 (240 m - 0)
Z/ fails to be a field because the ideal (6) is not maximal; it is contained in (2) and (3).
I/ = f and I/ = f (2)= {, -9, -20, 2, 46, } (3) = ?, -6, -3, 0, 3, 6, 9 } examples of maximal ideals
(2) (a) fields. (b)= 512-60612.18 2 (a) (a) (b)(a)
The fast is Rhi is a field if I the ideal A is maximal.
in larger ideals).
We we can to contract in the second s

eq. Z[x] has many examples of subrings and ideals.	
$p_{A} \left(\frac{2}{x+1} \right) \left(\frac{1}{x} \right) \left(\frac{1}{x+1} \right) = \left\{ h(x)(x^{2}+1) \right\} : h(x) \in \mathbb{Z}[x] \right\}$	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	3 = 7/1:7
$L[x] = \{a+bx + [x+1]\} \cdot a_1 \in \mathbb{Z} \} = \{a+bx + [x+1]\}$	S "Cancara interiore"
the ideal (x2) is not maximal.	ibit a field.
We have a homomorphism \$: Z(x) -> Z[i]	The only units (invertible
ligh is note the bas of f(x) -> R(i) (evaluate at i)	dements) are 1,-1, i,-i
is ker $\phi = (x^2 + 1)$	
The first isomorphism theorem for rings: Z[x] ~ ~ [[i]	
(x+1) h image of b	
domain of & kernel of &	
(2) - 52/4); 162 + 7/17] := also an ideal of 7/8]	
$(3) = (3h(x) \cdot h(x)) \cdot (4h(x))$ is also in induct of $2h(x)$.	R.00 (5) is at a
$\mathbb{Z}[\mathbf{x}] \cong \mathrm{tr}_{3}[\mathbf{x}], \mathrm{tr}_{3} = 30, 1, 25$ $\mathrm{tr}_{3}[\mathbf{x}]$ is a ring but not a man	inel deel.
2(4)	-
$\mathbb{Z}[\pi] \mathbb{E} = \{a \neq b : a, b \in \mathbb{F}_{3}\}, a \in \mathbb{F}_{3}$	
$(3, x^{2}+1) = \frac{2}{3} 3h(x) + (x^{2}+1)q(x) : h(x),$	$q(x) \in \mathbb{Z}[x]$
is a field	•
(3) (x2+1) non-maximal illals	

$Construct Q^{\circ} = \{(a_{\circ}, (1, 1, 1, 1,, (1, 0, 1, 0,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	en Q (one u i e Q } is a (40,9,92,93, j) = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	vary) ring vith coord commune 0,0,)=0 ere exists M such	linatevise addition the ring with sero divisors. It. that $-\frac{1}{4} < z_{\mu} < \frac{1}{4}$	on, multiplication identity 0° is not a fin volumerer k > M 3 20 years, of roti	eld.	imz = 0)
This is a A larger $R = \{r = 0\}$ $R \subset \mathbb{Q}^{\infty}$ $Z \subset R$	subring Z subring R ($(r_0, r_1, r_2, \dots) \in Q$ is also a is a subring	$C \mathbb{Q}^{\infty}$ is the s \mathbb{Q}^{∞} such that subring. (con L, in fact Z	the se k-so inbring of Cauch for all n there exist muntative ring is an ideal in the	y sequences in sts M such the with identity)	$ r_k - r_q < \frac{1}{2}$	votrenever k, l	≫ω" >Mξ.
K/Z 3 There is In R*	e R a field R oxforsion here exist	$\mathcal{E}^* \supset \mathbb{R}$ have demonstrate $\mathcal{E} \in \mathbb{R}^*$	infinitesands such that 2>	s and infinite	elements for k=1,2,3	, , , , , , , , , , , , , , , , , , ,	· · · · · · · ·
NTE: ZC	Q ^{oo} is not	an ideal in R ^o	e.g. (1, =, =, =, =, =)	$(1_{12},3,4,5) = ($	$(1,1,1,1,k,\dots)$		· · · · · · · · ·
· · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · ·	· · · · · ·

$\mathbb{R}^{\sim} = \{ (r_0, r_1, r_2, r_3,) : r_i \in \mathbb{R} \}$	} commutative ring with	h identify 1 = (1, 1, 1	, :,), , , , , , , , , , , , , , , , , ,	•
$\mathbb{P}^* = \mathbb{P}^*$	Inflese ZCR is a u	avial ideal. Whe	it mare ideal is this?	•
We will construct in = 11/2	2 · · · · · · · · · · · · · · · · · · ·	$T = \frac{2}{3}(0, \pi, 0) \pi$	*)) ;	
$= \mathbb{R}^{2} = \{(\mathbf{r}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r},\mathbf{r},\mathbf{r}_{i},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},r$	} has 32 ideals e.g.	J = ((0, 1, 0, 3, 4)		
U= 5 (5, 1, 2, 3, 4) : 5+1, +2+5+	q=0} is a subspace of	R° but not an in	leel e.g.	
$(5000) \cdot (1,1,1,-4) = (500)$	0,0) ŧ U	· · · · · · · · · · · ·		•
				•
₩ ²				
$\mathbb{R}^{5}/\mathbb{R}^{2}$		· · · · · · · · · · · · · · ·		
	{ (*,*,*,*	(***)} = R ⁵		•
R ⁵ /{(0 * * * *)} ≤ R	{ (*,*,*,*,0)}	{ (0*,*,*,*)}	5 mayinal ideals	
		· · · · · / · · · · · ·		
Nothing new.	/			
0	{ (+, +, 0,0,0) }			
	{(x,0,0,0)} {(0,*.0,0)}	2(0,0,0,*)3		
	\$ (0,0,0,0) }	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	
	\$ (9,0,0,0)	· · · · · · · · · · · · · ·		•
· · · · · · · · · · · · · · · · · · ·	F (0,0,0,0) T	· · · · · · · · · · · · · · ·		•
· ·	\$ (9,9,9,0,05)	· ·	· ·	•

$\mathbb{R}^{\infty} = \{(r_0, r_1, r_2, r_3, \cdots) : r_i \in \mathbb{R}\}$	comme ning with identity.
J= (0+++++++) = {(0, 1, 12, 13, 14,) : r eR}	
$\mathbb{R}^{\infty}_{J} \cong \mathbb{R}^{(\text{forig})}$	
(1,0,1,0,1,0,)(0,1,0,1,0,1,) = (0,0,0,0,0,0,)	\sim
If we pick an ideal containing both 1 and v then	$u + v \in \mathbb{Z}$ i.e. $I = (I, I, I,) \in \mathbb{Z}$
lant her x 1 = x E Z for all x E R R Z	R R I LAT Z C D Complex Subsof
Aavong all ideals in K with much choose to as large	pe as possible wall Z L IK (profit should)
1 2 2 La Startilla al	Denote)
ie. I & Z. Z has no mits (no invertible de	ements)
ie. JEZ. Zhes no mits (no invertible de Z must confair either u or v but not both.	ements)
ie. J ∉ Z. Z has no mits (no invertible de Z must confair either u or v bat not both. If u,v ∉ Z then picke one, say u, Z + R ^o u mutticle	DZ is largon ideal without containing !.
ie. J & Z. Z has no mits (no invertible de Z must confair either u or v but not both. If u,v & Z then pick one, say u, Z + R ^o u multiple P* > R Fram a < R is identified as (9,9,9,)	$\sum Z = is \ large ided without containing 1.$ (1,0,0,0,0,) + (0,1,1,1,1,) = (1,1,1,1,1,)
ie. $J \notin Z$. Z has no mits (ao invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say u , $Z + \mathbb{R}^{\omega}$ multiple $\mathbb{R}^{*} \supset \mathbb{R}$. Every a $\in \mathbb{R}$ is identified as $(q, q, q,)$ eq $g = (1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},) \in \mathbb{R}^{\infty}$ is infinitesmal.	$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ $
ie. $J \notin Z$. Z has no mits (no invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say u , $Z + \mathbb{R}^{\infty} u$ multiple $\mathbb{R}^{*} \supset \mathbb{R}$. Every a $\in \mathbb{R}$ is identified as $(q, q, q,)$ eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \frac{1}{5},) \in \mathbb{R}^{\infty}$ is infinitesmal. $O \leq S \leq Q_{0}$ because	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ie. $J \notin Z$. Z has no mits (no invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say u , $Z + \mathbb{R}^{\infty} u$ multiple $\mathbb{R}^{*} \supset \mathbb{R}$. Every ac \mathbb{R} is identified as $(q, q, q,)$ eg. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \frac{1}{5},) \in \mathbb{R}^{\infty}$ is infinitesmal. $0 < \mathcal{E} < 0.01$ because	$\begin{array}{c} 2 & \text{is "larger ideal without containing 1.} \\ \text{Can st u} \\ (1,0,0,0,0,0,\cdots) + (0,1,1,1,1,1,\cdots) = (1,1,1,1,1,\cdots) \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$
ie. $J \notin Z$. Z has no mits (ao invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say u , $Z + \mathbb{R}^{\infty} u$ multiple $\mathbb{R}^{*} \supset \mathbb{R}$. Every ac \mathbb{R} is identified as $(q, q, q, q,)$ eg. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},) \notin \mathbb{R}^{\infty}$ is infinitesmal. $0 < \mathcal{E} < 0.01$ become (1, 0, 0, 1, 0, 0,)(0, 11, 0, 1, 1, 0, 1, 1,) = (90, 0, 0,)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ie. $J \notin Z$. Z has no mits (ao invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say $u, Z + \mathbb{R}^{\infty} u$ multiple $\mathbb{R}^{*} \supset \mathbb{R}$. Every a $\in \mathbb{R}$ is identified as $(q, q, q, q,)$ eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5},) \notin \mathbb{R}^{\infty}$ is infinitesmal. $0 < \mathcal{E} < 0.01$ because (1, 0, 0, 1, 0, 0, 1, 0, 0,)(0, 1, 1, 0, 1, 1, 0, 1, 1,) = (30, 0, 0,) $\mathcal{E} \cdot (1, 2, 3, 4, 5,) = (1, 1, 1, 1,) = 1$	$\begin{array}{c} \mathcal{D} \ \mathcal{Z} & \text{is "largon ideal without containing !.} \\ \text{(as of 4} & (1,0,0,0,0,\cdots) + (0,1,1,1,1,1,\cdots) = (1,1,1,1,1,\cdots) \\ & \widehat{\mathcal{Z}} & \widehat{\mathcal{T}} & \widehat{\mathcal{Z}} \\ & \widehat{\mathcal{Z}} & \widehat{\mathcal{Z}} & \widehat{\mathcal{Z}} \end{array}$
ie. $J \notin Z$. Z has no mits (no invertible ele Z must contain either u or v but not both. If $u, v \notin Z$ then pick one, say $u, Z + R^{\circ}u$ multiple $R^{*} \supset R$. Every $a \in R$ is identified as $(q, q, q, q,)$ eg. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{7}, \frac{1}{5},) \notin R^{\circ}$ is infinitesmal. $o < \mathcal{E} < 0.01$ because (1, 0, 0, 1, 0, 0,)(0, 1, 1, 0, 1, 1, 0, 1, 1,) = (90, 0, 0,) $\mathcal{E} \cdot (12, 3, 4, 5,) = (1, 1, 1, 1,) = 1$ (2, 3, 4, 5, 6,)	$ \begin{array}{c} $