

Solutions to HW3

- 1. (a) No, this maps $0 \mapsto 3$. (Automorphisms of fields must map $0 \mapsto 0$.)
 - (b) No, this is a homomorphism. However, it is not one-to-one; for example, it maps $x \to x^2$ and also $-x \mapsto x^2$. It is also not onto; for example, x is not in the image of this homomorphism.)
 - (c) No, again, this is a homomorphism but it is not onto. The element x is not in its image. (Every polynomial in the image has degree divisible by 3.)
 - (d) Yes, this is an automorphism. In fact, its inverse is itself.
 - (e) Yes, this is an automorphism; its inverse is $f(x) \mapsto f(\frac{3x-5}{2-x})$.
- 2. Writing $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$, we have $x^2 + 3x + 4 = f(x)^2 = a_0^2 + 2a_0 a_1 x + (a_1^2 + 2a_0 a_2) x^2 + (2a_1 a_2 + 2a_0 a_3) x^3 + \cdots$, so $f(x) = 2 + \frac{3}{4}x + \frac{7}{64}x^2 - \frac{21}{512}x^3 + \cdots$.

The coefficients were found recursively. The negative of this entire series is also acceptable. In fact, starting with $a_0 = \pm 1$, we obtain two solutions $f(x) = \pm \left(2 + \frac{3}{4}x + \frac{7}{64}x^2 - \frac{21}{512}x^3 + \cdots\right)$.

- 3. (a) The map $f(x) \mapsto f(x^2)$ is an isomorphism from E to the subfield F.
 - (b) [E : F] = 2; $[E : \mathbb{Q}] = [F : \mathbb{Q}] = \infty$. The infinite degree extensions have $\{1, x, x^2, x^3, \ldots\}$ as an infinite linearly independent subset. (More accurately, both of these extensions have countably infinite degree \aleph_0 , but we accept the symbol ∞ .) The extension $E \supset F$ has basis $\{1, x\}$.
 - (c) As answered in class early during the semester (also on one of the handouts dealing with algebraic and transcendental extensions), the subfield $K = \mathbb{Q}(\pi) \subset \mathbb{R}$ is isomorphic to E. An explicit isomorphism $E \to K$ is given by $f(x) \mapsto f(\pi)$. The only fact that we require here about π is that it is transcendental over \mathbb{Q} ; so in its place, we can substitute e or any other known transcendental number.

4. Let
$$f(x) = a_{-2}x^{-2} + a_{-1}x^{-1} + a_0 + a_1x + a_2x^2 + \dots \in \mathbb{F}_2((x))$$
, so that
 $1 + x^2 = (x^2 + x^4 + x^5)(a_{-2}x^{-2} + a_{-1}x^{-1} + a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + \dots).$

Expand the right side and solve recursively for the coefficients $a_i \in \mathbb{F}_2$ to obtain

$$f(x) = 1x^{-2} + 0x^{-1} + 0 + 1x + 0x^{2} + 1x^{3} + 1x^{4} + 1x^{5} + \cdots$$
$$= x^{-2} + x + x^{3} + x^{4} + x^{5} + \cdots$$