

Solutions to HW3

- 1. (a) $2 + 3\sqrt{2}$
 - (b) $1 + 4\sqrt{2}$
 - (c) $1 + \sqrt{2}$
 - (d) $\frac{4+\sqrt{2}}{3+2\sqrt{2}} \cdot \frac{3-2\sqrt{2}}{3-2\sqrt{2}} = \frac{3}{1} = 3$
 - (e) **3**
- 2. There are exactly $\phi(24) = 8$ choices of γ as primitive element:

 $1+2\sqrt{2}, \quad 1+3\sqrt{2}, \quad 2+\sqrt{2}, \quad 2+4\sqrt{2}, \quad 3+\sqrt{2}, \quad 3+4\sqrt{2}, \quad 4+2\sqrt{2}, \quad 4+3\sqrt{2}.$

In order to check that γ is a generator in a cyclic group of order 24, it suffices to check that $\gamma^8 \neq 1$ and $\gamma^{12} \neq 1$.

- 3. (a) There are p^2 monic polynomials of degree two, $x^2+bx+c \in \mathbb{F}_p[x]$, corresponding to the choices of $b, c \in \mathbb{F}_p$. Of these, exactly $\binom{p}{2} = \frac{1}{2}p(p+1)$ are reducible polynomials (x-r)(x-s) corresponding to the choices of roots $r, s \in \mathbb{F}_p$, not necessarily distinct. This leaves $p^2 \frac{1}{2}p(p+1) = \frac{1}{2}(p^2-p)$ irreducible monic polynomials of degree two.
 - (b) There are p^3 monic polynomials of degree three, $x^3 + bx^2 + cx + d \in \mathbb{F}_p[x]$, corresponding to the choices of $b, c, d \in \mathbb{F}_p$. This includes
 - $\frac{1}{6}p(p+1)(p+2)$ polynomials having three linear factors (x-r)(x-s)(x-t)where $r, s, t \in \mathbb{F}_p$ are not necessarily distinct; and
 - $p \cdot \frac{1}{2}(p^2 p) = \frac{1}{2}p^2(p-1)$ polynomials of the form $(x r)(x^2 + bx + c)$ where the quadratic factor $x^2 + bx + c$ is irreducible.

This leaves $p^3 - \frac{1}{6}p(p+1)(p+2) - \frac{1}{2}p^2(p-1) = \frac{1}{3}(p^3-p)$ irreducible monic polynomials of degree three.

You should check how we counted irreducible polynomials of degree 2 and 3 in the case p = 2 in class (by counting reducible polynomials in each case, and subtracting from the total number of monic polynomials), as this gives the idea for the formula in general. Check for p = 2: 1 irreducible polynomial x^2+x+1 of degree two, and 2 irreducible polynomials x^3+x+1 and x^3+x^2+1 of degree three, in agreement with predictions using our formulas.