

Practice Problems 7

Monday, October 21, 2024

- 1. Prove that $\binom{pa}{pb} \equiv \binom{a}{b} \pmod{p}$ for all integers p, a, b with p prime and $a \ge b \ge 0$.
- 2. (a) If every point of the plane is painted one of three colors, do there necessarily exist two points of the same color exactly one inch apart?
 - (b) What if 'three' is replaced by 'nine'?
- 3. Find all integral solutions of the equation $|p^r q^s| = 1$ where p are q are prime numbers and r and s are positive integers larger than unity. Prove that there are no other solutions.
- 4. A well known theorem asserts that a prime p > 2 can be written as the sum of two perfect squares $(p = m^2 + n^2)$, with m and n integers) if and only if $p \equiv 1 \mod 4$. Assuming this result, find which primes p > 2 can be written in each of the following forms, using (not necessarily positive) integers x and y:

(a)
$$x^2 + 16y^2$$
;

- (b) $4x^2 + 4xy + 5y^2$.
- 5. Let C be the class of all real-valued continuously differentiable functions f on the interval $0 \le x \le 1$ with f(0) = 0 and f(1) = 1. Determine the largest real number u such that

$$u \leqslant \int_0^1 |f'(x) - f(x)| \, dx$$

for all f in C.

6. Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer m?

7. Evaluate
$$\lim_{n \to \infty} \frac{1}{n^4} \prod_{i=1}^{2n} (n^2 + i^2)^{1/n}$$
.