Putnam Team Seminar

Practice Problems 3

Monday, September 16, 2024

1. The horizontal line y=c intersects the curve $y=2x-3x^3$ in the first quadrant as in the figure. Find c so that the areas of the two shaded regions are equal.

- 2. A game of solitaire is played as follows. After each play, according to the outcome, the player receives a or b points (a and b are positive integers with a greater than b), and his score accumulates from play to play. It has been noticed that there are thirty-five non-attainable scores and that one of them is 58. Find a and b.
- 3. A **composite** (positive integer) is a product ab with a and b not necessarily distinct integers in $\{2, 3, 4, \ldots\}$. Show that every composite is expressible as xy + xz + yz + 1, with x, y, and z positive integers.
- 4. Let F(x) be a real valued function defined for all real x except for x = 0 and x = 1 and satisfying the functional equation $F(x) + F(\frac{x-1}{x}) = 1 + x$. Find all functions F(x) satisfying these conditions.
- 5. Suppose that the function $h: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies the equation $h(x,y) \ = \ a \frac{\partial h}{\partial x}(x,y) + b \frac{\partial h}{\partial y}(x,y)$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all (x, y) in \mathbb{R}^2 , then h is identically zero.

6. Consider the power series expansion

$$\frac{1}{1 - 2x - x^2} = \sum_{n=0}^{\infty} a_n x^n.$$

Prove that, for each integer $n \ge 0$, there is an integer m such that $a_n^2 + a_{n+1}^2 = a_m$.

7. Show that the closed unit disk in the plane cannot be partitioned into two disjoint congruent subsets.