

Practice Problems 11 Monday, November 18, 2024

1. Show that 
$$\int_0^1 x^x dx = \sum_{n=1}^\infty (-1)^{n+1} n^{-n}$$
.

- 2. Let A and B be  $2 \times 2$  matrices with integer entries such that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices whose inverses have integer entries. Show that A+5B is invertible and that its inverse has integer entries.
- 3. Let f(x) be a continuous function such that  $f(2x^2-1) = 2xf(x)$  for all x. Show that f(x) = 0 for  $-1 \le x \le 1$ .
- 4. Let u(t) be a continuous function in the system of differential equations

$$\frac{dx}{dt} = -2y + u(t), \qquad \frac{dy}{dt} = -2x + u(t).$$

Show that, regardless of the choice of u(t), the solution of the system which satisfies  $x = x_0$ ,  $y = y_0$  at t = 0 will never pass through (0, 0) unless  $x_0 = y_0$ . When  $x_0 = y_0$ , show that, for any positive value  $t_0$  of t, it is possible to choose u(t) so the solution is at (0, 0) when  $t = t_0$ .

5. Find the minimum value of

$$(u-v)^{2} + \left(\sqrt{2-u^{2}} - \frac{9}{v}\right)^{2}$$

for  $0 < u < \sqrt{2}$  and v > 0.

6. Suppose that a, b, c, A, B, C are real numbers,  $a \neq 0$  and  $A \neq 0$ , such that

$$\left|ax^{2} + bx + c\right| \leqslant \left|Ax^{2} + Bx + C\right|$$

for all real numbers x. Show that

$$\left| b^2 - 4ac \right| \leqslant \left| B^2 - 4AC \right|.$$

- 7. Let G be a group, with operation \*. Suppose that
  - (i) G is a subset of  $\mathbb{R}^3$  (but \* need not be related to addition of vectors);
  - (ii) For each  $\mathbf{a}, \mathbf{b} \in G$ , either  $\mathbf{a} \times \mathbf{b} = \mathbf{a} \ast \mathbf{b}$  or  $\mathbf{a} \times \mathbf{b} = \mathbf{0}$  (or both), where  $\times$  is the usual cross product in  $\mathbb{R}^3$ .

Prove that  $\mathbf{a} \times \mathbf{b} = \mathbf{0}$  for all  $\mathbf{a}, \mathbf{b} \in G$ .