Math 2200-OI (Calculus I) Spring 2020
Book 1

Calculus I: Single-variakle calculus $y=f(x)$ for example (one input variable x. one Jan output variable.). Derivatives (rates of change): differential calculus.

Calculus II- also single-vaviable. Integral calculus.

Calculus III: multivariable ie. several input variables and/or several output variables eg. position $(x(t), y(t), z(t))$ of an object at time t : one input t, three onpout variables $x(t), y(t), z(t)$.

Eg. Temperature in this room as a function of position $T(x, y, z)$ (three inputs x, y, z; ore output T)
Eg. Wind velocity as a function f position: three inputs x, y, z; threes outputs are the components of wind velocity.

Tangent lines to curves

Temperature T as a function of fine t During the time interval $\left[t_{1}, t_{2}\right]$ ie. $t_{1} \leq t \leq t_{2}$ the temperature rises from T_{1} to T_{2}
The average rate of change of temperature during this time iteaval is $\frac{\Delta T}{\Delta t}=\frac{T_{2}-T_{1}}{t_{2}} \longleftarrow$ change in temperature
$\frac{\Delta T}{\Delta t}=\frac{T_{2}-t_{1}}{t_{2}} \sim$ time elapsed.
W_{e} wait to under stand the instantaneous rate of change of temperature at time t_{1}. To determine this, fist consider the average tate of change over smaller and smaller time intervals $\left[t_{1}, t_{2}\right]$ where we take $t_{2} \rightarrow t_{1}$ $\left(t_{2}\right.$ gets closer and closer to $\left.t_{1}\right)$ $E_{g} . \quad t_{2} \frac{T_{2}-T_{1}}{t_{-}-t_{1}}$

4	2
degree	
3.2	2.17
3.1	2.19
3.001	2.197
2.9	2.20.
2.7	2.23
2	2.31

The limit is 2.2
(The temperature at 3 pm is changing at a rate of 2.2 degrees per hour.
$1 \operatorname{Jan} 29$
We wite $\lim _{t_{2} \rightarrow 3} \frac{T_{2}-T_{1}}{t_{2}-t_{1}}=2.2$
1 the limit of $\frac{T_{2}-T_{1}}{t_{2}-t_{1}}$ is 2.2
as t_{2} approaches 3).

A second example using a polynomial function $y=f(x)=x^{2}$. Find the rate of change of y with respect to x at $x=2$.
II The secant line joining the points $(2,4)$ and $(3,9)$ on the curve has slope

$$
\frac{\Delta y}{\Delta x}=\frac{9-4}{3-2}=5
$$

$$
f(2)=4
$$

More generally, if we join the points $(2,4)$ and $(x, f(x))$ on the curve, the secant line las slope

The tangent in e at $(2,4)^{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f(x)-f(2)}{x-2}
$$ $y-4=4(x-2)$ ie.

$y=$| $4 x-4$ |
| :---: |
| x |$\frac{f(x)-f(2)}{x-2}$

3
2.5
2.1 $\frac{5}{2.01} \quad 4.1$

Based on the table of values we guess that

$$
\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=4
$$

If a function has a sufficiently nice formula g polynomial, then we lowe algebraic rales that provide definite ways to evaluate limits, eliminating guesswork based on the graph or table of values.
Eg. Find the slope of the tangent line to the graph of $y=x^{2}$ at $(2,4)$ solution The secant line from $(2,4)$ to $(x, f(x))=\left(x, x^{2}\right)$ has slope

$$
\frac{\Delta y}{\Delta x}=\frac{x^{2}-4}{x-2}=\frac{(x+2)(x-2)}{x-2}=x+2 . \text { for } x \neq 2
$$

The slope of the tangent line is

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=2+2=4
$$

